Jan Sammet, RWTH Aachen University **Federal Ministr** of Education and Research with L. Feld, R. Jussen, W. Karpinski, K. Klein, M. Wlochal Motivation: the CMS tracker – from LHC to SLHC V_{in} I_{in} • Smaller feature size front-end electronics (helps to save power) • Luminosity: $10^{34} \text{ cm}^{-2}\text{s}^{-1} \rightarrow 5^{34} \text{ cm}^{-2}\text{s}^{-1}$ Up to 10 times more particles per collision in the tracker Larger currents for same amount of power **DC-DC converter** • More/thicker cables are not an option (material budget, services cannot be accessed) More channels, track information in level-1 trigger **Switching Network** Faster and more complex electronics New tracker with a new powering scheme Energy buffer nl₀/r System integration $V_{out} = \frac{V_{in}}{r} < V_{in}$ **R**_C Reduced voltage V_0, I_0 V_0, I_0 V_0, I_0 • n detector modules D_i powered in parallel, Increased current , c H D_n I с Ц D, PS one converter C per detector $|\mathbf{I}_{\text{out}}| = r \cdot \mathbf{I}_{\text{in}} > \mathbf{I}_{\text{in}}$ • Detectors are operated at $V_0 = V_{out}$ while $V_{in} = r \cdot V_0$ I_0/r I_0/r I_0/I **DC-DC conversion** • Power losses are reduced by factor of r²

Radiated Electromagnetic Emissions of DC-DC Converters

- Converter switches between "On" and "Off" state
- Inductor is used as energy buffer
- Conversion ratio r is given by duty cycle D
- (for lossless converter: $r = 1/D = T/t_{on}$)

Advantages

- V_{out} is programmable via the duty cycle
- Large currents (~A) can be provided
- High efficiency is feasible (~70% 80%)

Topology of choice: buck converter

Challenges

- Radiation-hard ASIC (switches)
- Efficient and light design
- Switching noise

• Air-core coil (due to 3.8T field in CMS)

 \rightarrow risk of radiated noise

Coil Optimization

