

Very low power, High Voltage base for a Photo Multiplier Tube for the KM3NeT deep sea neutrino telescope.

P.F.Timmer*
E.Heine
H.Z.Peek

NIKHEF, Amsterdam, the Netherlands

Outline

- •Design requirements for the high voltage circuit board.
- •System overview.
- •HV generation.
- •Diagram.
- •Where will these high voltage circuit boards being used.
- •Measurement results.
- •Prototype of the high voltage circuit board.
- Summary

Multi PMT Optical Module system for detection of neutrinos

Location: Seabed of the Mediterranean Sea.

Embracing: several cubic kilometers of seawater, max. 5000 meter depth.

Number of optical modules: 12000

Number of PMT's: 372000

What is KM3NeT

- •KM3NeT is an acronym for cubic kilometre size (KM3) Neutrino Telescope and will host a neutrino telescope in the form of a water Cherenkov detector with a volume of at least one cubic kilometre.
- •KM3NeT will search for neutrinos from distant astrophysical sources like gamma ray bursts, or colliding stars.
- •An array of thousands of optical sensors will detect the faint light in the deep sea from charged particles originating from collisions of the neutrinos and the Earth.
- •For the detection of this faint light (photons), Photon Multiplier Tubes will be used. 31 PMT's will be housed in a single Optical Module. A total of 300 detection units arranged in a string with 20 optical modules will be deployed.

Detecting photons caused by neutrinos.

- •Photons caused by neutrinos are masked by background photons.
- •Background photons come from decay of potassium 40 in the water, the glass of the sphere and the glass of the PMT itself.
- •These photons are detected by the PMT's as single photons.
- •Bioluminescence is also a source of photons.
- •PMT's will have a their own dark count (caused by thermal electrons)
- •Consequently, all PMT's generate random signals.
- •Selecting the signals caused by neutrinos in the huge dataflow will be a defiant job.

Optical Module

Vitrovex sphere 17 inch

P.F.Timmer Nikhef Amsterdam Electronics-Technology

12 PMT's in the upper half of the optical module

19 PMT's in the lower half of the optical module

Design requirements for the high voltage circuit

Every PMT must give the same output signal as it is hit by a single photon. The gain of a PMT depends on the level of the supplied high voltage.

The HV for each PMT needs to be individually adjustable. Consequently **each PMT gets its own HV circuit board**.

Limited space in the OM available.
Only in the centre of the sphere is room for the electronics.
Consequently **limited board space**.

Heat dissipation must be kept to a minimum.

No active cooling in the sphere available. The produced heat has to be transferred through the glass to the seawater

Consequently **low dissipation**.

Good design rules imply also low ripple and low RFI generation.

Be aware, if the circuitry dissipates e.g. 0.5 W more,180 kW extra has to be transported over 100 km from shore to the detector.

PMT global specifications

The detector will be designed for a lifetime of 15 years.

The lifetime of a PMT depends on the maximum amount of charge the anode can supply.

Because of this property a low gain PMT has been chosen.

A low gain PMT means a dedicated pre amplifier.

Cathode characteristics

Radiant blue sensitivity at 470 nm > 130 mA/W

QE at 470 nm > 20%

Non homogeneity of cathode response target +/- 10%, +/- 20% acceptable

Characteristics with voltage divider

Maximum supply voltage 1400 V
Maximum Gain 5 *10⁶

External electro static coating to the cathode

Anode characteristics

Dark count < 500Hz at 15 °C, > 0.3 pe threshold

Pulse rise time < 3 ns

Duration at half height 5 ns FWHM at single photon

Transit time spread < 2 ns sigma

Peak to valley ration 3, typical 2

P.F.Timmer

HV generation 1

Resistor Base

- 'High' power dissipation
- Temperature Sensitive output voltage
- Bigger volume then CW base
- DC current 10 times anode current

Cockroft Walton base

- +: Low power dissipation then RB
- Fixed voltage ratio
 no DC current

HV generation 2

HV versus frequency and Isupply

P.F.Timmer Nikhef Amsterdam Electronics-Technology Power and frequency

2 - 9 kHz at 800 - 1200 V

0.6 - 1.4 mA $_{3v3}$ at 800 - 1200 V (0.66mW-4.6mW)

EMC

P.F.Timmer Nikhef Amsterdam Electronics-Technology RFI -20 dB @ 150 kHz-10 MHz

PMT and **HV** circuit

P.F.Timmer Nikhef Amsterdam Electronics-Technology

Form factor mostly dictated by PMT

KM3NeT

PMT base

Digital part

Identifier

Analogue part

 V_{ripple} 706 mV₁₀₅₆ 8.5 < T(°C) < 22.1 V_{ripple} 0.07% 8.5 < T(°C) < 22.1 V_{ripple} < 150 mV/dynode Voltage stabilization 0.95% on 38% input variation Supply voltage 2V5 < 3V3 < 4V0 Power .6 - 1.4 mA_{3v3} at 800 - 1400 V < **4.5 mW** dV/dt < 75 mV/μs, RFI -20 dB @ 150 kHz-10 MHz cathode voltage -800 - -1400 V Voltage divider (between D1 – D10 and A for Photonis XP53B20) K DA G D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 A 0.15 1 1.5 2 1 1 1 1 1 1 1 1 Time resolution 2 ns
Two-hit time separation 25 ns
Threshold DAC 8 bits
HV DAC 8 bits
PROM (ID) 20 bits

Communication I²C

Supply voltage 3V0 < 3V3 < 3V6

Power consumption 20 mW

Technology 350 nm CMOS Silicon area 1.6 mm x 1.8 mm

Presentation given by Deepak Gajanana A Front End ASIC for the read out of the PMT in the KM3NeT Detector

P.F.Timmer Nikhef Amsterdam Electronics-Technology

(total: 13.65)

 $PCB = 38 \text{ mm}\emptyset$

Summary

HV circuit, designed for a 10 dynodes PMT after the requirements

✓ Adjustable HV

cathode voltage -800 - -1400 V

✓ Small footprint

 $PCB = 38 \text{ mm}\emptyset$

✓ Low power

Vinput 3.3V

 $0.6 - 1.4 \text{ mA}_{3v3}$ at 800 - 1200 V < **4.5 mW** (commercial available 50 mW)

✓ Low ripple

706 mV₁₀₅₆ $8.5 < T(^{\circ}C) < 22.1$

0.07% $8.5 < T(^{\circ}C) < 22.1$

Vripple < 150 mV/dynode

✓ Low RFI

RFI -20 dB @ 150 kHz-10 MHz

P.F.Timmer Nikhef Amsterdam Electronics-Technology

Amplifier

With a prototype of the dedicated amplifier 80 fC was successfully detected. (PMT gain 0.5*10⁶) No influence of the switching cycle of the HV converter was seen.

