

The FE-I4 Pixel Readout System-on-Chip for ATLAS Experiment Upgrades

Tomasz Hemperek on behalf of ATLAS Pixel Collaboration

ATLAS Detector

IBL = New Insertable B-Layer at 33 mm

Tomasz Hemperek, University of Bonn @ TWEPP 2010

21/09/2010

Current Pixel Detector Module

- 16-front-end chip (FE-I3) module with a module controller chip (MCC)
- Planar n-on-n DOFZ silicon sensors, 250 µm thick
- Designed for for 1 x 10¹⁵ 1MeV n_{eq} fluence and 50 MRad

Front End Chip

Pixel Size [µm ²]	50×400	50×250
Pixel Array	18×160	80×336
Chip Size [mm ²]	7.6×10.8	20.2×19.0
Active Fraction	74 %	89 %
Output Data Rate [Mb/s]	40	160
Transistor Count [M]	-	~80

Column Waiting (FE-I3)

Inefficiencies

Double Hit

Tomasz Hemperek, University of Bonn @ TWEPP 2010

21/09/2010

5

Motivation

New FE improvements

- New technology
- Smaller pixel size
- Bigger chip size and active area
- New digital architecture
- New analog pixel
- Reduce number of external components
- New powering schemes
- Decrease cost (per area)
- Better radiation hardness

FE-I4 Functional Overview

- Pixel Array
- Double Column
- 4 Pixel Region
- End Of Chip Logic
- Data Output Block
- Phase Lock Loop
- Command Decoder
- SEU-Hard Memory
- DACs & Reference
- Power
- Pads / RX /TX

Analog Pixel

- Two-stage architecture optimized for low power, low noise and fast rise time
- Additional gain Cc/Cf2~ 6
- More flexibility on choice of Cf1
- Charge collection less dependent on detector capacitor
- Decoupled from preamplifier DC potential shift caused by leakage
- Local DACs for tuning feedback current and global threshold
- Charge injection circuitry

FE-I4-P1 (Prototype)

- 61x14 pixel array
- Silicon proven
- RadHARD up to 200MRad

Noise Measurements

Noise Measurements (Irradiation)

Tomasz Hemperek, University of Bonn @ TWEPP 2010

4 Pixel Region

Cluster size projection

Pixel organization

- 4 analog pixels are connected to one digital region
- Analog pixels can operate and be tested independently from digital part

Digital Region (simplified)

- Receiving hit
- Generate leading edge
- Start ToT counter
- Assign first free memory and latency counter
- Generate trailing edge
- Store ToT value
- Check for trigger when latency counter finished
- Indicate ready to read status (release token)
- Read memory
- Release memory after read

FE-I4 Inefficiency

Regional Buffer Overflow

Memories	Simulation	
	IBL	10xLHC
5	0.047 %	2.19%
6	0.011%	0.65%
7	<0.01%	0.16%

FE-I4 Inefficiency (3.7cm)

Column Readout

- Two prioritized token scenario (column and periphery level)
- One data bus
- End of column logic selects column to read
- Chip control logic controls trigger and read
- Data is always read in the same order
- All buses including address (thermal encoded) protected with hamming encoding

Pixel Array Layout

Tomasz Hemperek, University of Bonn @ TWEPP 2010

Framing / Transmission

Re-formatting: Data reduction about 25% and 8-bit word format

Tomasz Hemperek, University of Bonn @ TWEPP 2010

Powering

DC/DC

- Saving cable material budget
- Reduction of cable power losses

Serial Power

New Module Concept

- Sensor technology independent.
- Decision on sensors after prototyping with FE-I4
- Minimum amount of external components

Design Flow

- Design in "big A small D" methodology
- Blocks designed and verified individually
- Full chip digital and mixed-signal verification
- Work synchronization with integrated Revision Control System
- Big chip = many difficulties with software and PDK!

Verification

 Full chip verification based on Open Verification Methodology (OVM) with multiple physics based and random test

Tomasz Hemperek, University of Bonn @ TWEPP 2010

21/09/2010

OUTPUT

(RECEIVE)

Conclusion

- Project duration: ~3 years
- Design team: ~21 persons+
- FE-I4A last official shipping date: This Thursday (23rd September 2010)
- Test setup readiness ramping-up, on time for IC back
- > Tests: Wafer, single-chip, bump-bonded (planar, 3D, diamond), irradiation

Design team

Bonn: D. Arutinov, M. Barbero, T. Hemperek, A. Kruth, M. Karagounis
CPPM: D. Fougeron, F. Gensolen, M. Menouni
Genova: R. Beccherle, G. Darbo
LBNL: S. Dube, D. Elledge, J. Fleury (LAL), M. Garcia-Sciveres, D. Gnani, F. Jensen, A. Mekkaoui
NIKHEF: V. Gromov, R. Kluit, J.D. Schipper, V. Zivkovic

Extra Slides

Tomasz Hemperek, University of Bonn @ TWEPP 2010

Test Chips

Tomasz Hemperek, University of Bonn @ TWEPP 2010

Clocking

- Phase Lock Loop (PLL) type 2
- Voltage Controlled Oscillator (VCO) at 640 MHz (x16)
- Lost of Lock Detection
- 2 Independent output multiplexers
- Silicon Proven

Data Transmission

LVDS TX

- Transition speed up to 330 MHz
- RadHARD up to 200MRad
- Silicon Proven

Shunt-LDO

- Combination of LDO and shunt transistor
- "Shunt-LDO" regulators having completely different output voltages can be placed in parallel without any problem regarding mismatch & shunt current distribution
- "Shunt-LDO" can cope with an increased supply current if one FE-I4 does not contribute to shunt current e.g. disconnected wirebond
- Can be used as an ordinary LDO when shunt is disabled
- Silicon Proven

RadHARD Memory

- Silicon Proven
- RadHARD and SEU Tolerant

