

The front-end Electronics for the LHCb upgrade.

Jan Buytaert (C.E.R.N.)

On behalf of the LHCb collaboration.

TWEPP 2010 Workshop, Aachen, September 21, 2010

- The LHCb upgrade plan & main issues.
- The new trigger/daq architecture.
- Overview of the subdetector modifications.
- Subdetector electronic developments.
- Summary.

The Plan:

	E	Peak <i>L</i> (10 ³² cm ⁻² s ⁻ ¹)	∫∠	
2011	7 TeV	2	1 fb ⁻¹	= LHCb design luminosity !
2012				
2013	>10 TeV	2	1 fb ⁻¹	
2014	>10 TeV	2	2 fb ⁻¹	
2015	>10 TeV	2	2 fb ⁻¹	Total ∫ ∠ ~ 6 fb ⁻¹
2016				Install LHCb upgrade !
2017	>10 TeV	10	10 fb ⁻¹	
2018	>10 TeV	10	10 fb ⁻¹	

- The increase in luminosity 'only' requires stronger beam squeezing , i.e. does not depend on any LHC upgrade.
- A 'letter of intent' will be submitted very soon to LHCC.

Peak L (10 ³² cm ⁻² s ⁻¹)	2	10	20
Average # of interactions/crossing	0.4	2.0	4.0
Average # of interactions/non- empty crossing	1.3	2.4	4.3

- The occupancies will only increase by ~ 2 due to multiple interactions.
- The current detector granularities are adequate and no major detector changes required.
- The exact beam conditions are under discussion with LHC.

L0 trigger efficiency.

- Problem: the L0 hadron hardware trigger loses efficiency at higher luminosities. The event yield is even dropping...
 - Because the DAQ event readout rate is limited to 1MHz, the trigger thresholds must be raised ...

2 solutions:

- A more sophisticated hardware hadron trigger or
- No hardware trigger, increase the readout rate and implement trigger in a CPU farm !
 - □ Full detector information available.
 - □ Flexible algorithm.
 - Double the hadron trigger efficiency .

New Trigger/DAQ architecture.

- All frontend electronics must be adapted or redesigned to
 - readout all collision data @ 40MHz
 - and zero-suppress to minimize data bandwidth.
- The L0 hardware trigger is re-used to reduce the event rate to match the installed router and CPU farm capacity (staging). Initially run at ~ 5MHz.

(Tell 40: talk of J.P. Cachemiche on wednesday)

Typical Subdetector readout & control:

Number of GBT links:

	Data	TFC/ ECS
Velo	2496	52
ОТ	3456	72
IT	1200	~100
RICH	2476	~200
Calo	952	238
Muon	1248	104
Total =	11684	766

- Total optical links required ~ 13000 .
- LHCb has already 8300 links installed today.

LHCb detector.

(See talk of K. Henessy on Friday).

Main detector modifications.

VELO and RICH:

- □ Fullz new sensor modules and photon detectors (because they are highly integrated with the FE-electronics) :
 - VELO : pixel sensors will replace R-Phi strip sensors.
 - RICH : multi-anode PMT's will replace Hybrid photon detector (HPD) tubes.
- Tracker :
 - Inner Tracker : Keep current Si strip sensors or use scintillating fibers.
 - Outer Tracker : Keep straw tubes and part of the FE electronics.
- Calorimeters:
 - Keep MaPMT's, but at reduced HV to avoid ageing.
 - -> 5x lower signal gain -> to maintain S/N, need lower noise -> new amplifiers ...
 - Possibly remove pre-shower (PS) and scintillating pad (SPD).
- Muon:
 - Detector and FE electronics stay unmodified.
 - The M1 station will be removed.

VELO upgrade.

VELO upgrade.

- Design of a readout asic VELOPIX' in close collaboration with TimePix2.
 - □ 256x256 pixel array, 55um x 55um pixel size.
 - Minimal insensitive area ($\sim 5\%$)
 - Analog requirements identical.
 - Simultaneous meaurement of Time-overthreshold and time identification of hits.
 - **Radiation hardness TID 400Mrad.**
- Specific VELOPIX:
 - Highest average particle rate is 200MHz/cm².
 =>12Gb/s data generation rate /asic !
 - Clustering and formatting in pixel.
 - 'Superpixel' = group digital logic of 4x4 pixels in a single area.
 - □ High speed column readout (8bit@40MHz).
 - 4 multi-Gbit output links.
 - Total power budget < 3W@ 1.2 V

Bipolar Input charge	
Leakage current compensation	
Peaking time	≤ 25ns
Preamp output linear dynamic range	< 40 Ke-
ENC (σ_{ENC})	~75 e-
Detector capacitance	< 50 fF
Discriminator response time	< 2ns
Full chip minimum detectable charge	< 500 e-
Threshold spread after tuning	< 30 e-
Pixel analog power consumption @ 1.2V	< 15-20 µW

Module readout concept :

- Total of 52 modules in full system.
- Work is starting on the link technology.

RICH upgrade.

RICH upgrade.

Discrete component prototyping:

- 8-channel PCB
- Using SiGe npn transistors.
- Total power dissipation < 10 mW/channel
- Low noise $\sim 2.2 \text{nV} / \sqrt{\text{Hz}}$
- rise-time =1.4 ns, fall-time = 4ns
- Next:
 - Start design of asic version.
 - Prototype of digital functionality in FPGA.

Outer Tracker upgrade.

Current FE boards (432)

- ASDBLR boards are reused.
- OTIS TDC replaced by FPGA TDC.
- 1GOL replaced by 8 GBT

Outer Tracker upgrade.

- All logic is implemented in ACTEL Proasic3E FPGA for radiation tolerance .
 - 16 Channel 4 bit TDC design finished.
 - INL and DNL checked.
 - Good temperature stability checked.
 - Zero Suppression and data formatting.
 - Output on parallel bus (20 bit @ 160 MHz) to GBT.
 - □ I2C interface for configuration.

Prototyping :

Inner Tracker upgrade.

Option1 : reuse Si strip ladders. —

 Need to develop a new rad-hard, binary ASIC (cfr ATLAS) with 40MHz readout... not yet started.

 Option 2 : Scintillating fibers with SiPM readout.

Radiation hardness for 10^{10} neutron/cm² ? under study....

- The HV (and PMT gain) has to be decreased by a factor 5 to avoid premature ageing.
 - ->the preamplifier input equivalent noise must be decreased accordingly.
- A new frontend asic is being designed.
 - The signal is alternated every 25 ns between two integrators. The nonative integrator is reset.

A first prototype of preamplifier and switched integrators has been designed and submitted in AMS 0.35 um SiGe BiCMOS.

Calorimeter upgrade.

- New front end cards : 32 PMT signals
 - Extensive use of FPGA's (AX and APA) for data compression, trigger and ECS

Prototype of digital electronics

Muon upgrade & Interaction trigger.

- LHCb has a firm plan for its upgrade in 2016.
- No major detector changes needed, except VELO and RICH.
- All front-end electronics must be adapted or redesigned for 40 MHz readout and zero suppression.
- The subdetectors electronic developments are well underway.
- Extensive use of radiation tolerant FPGA's to avoid ASIC design where possible.

Backup slides

Pixel matrix readout architecture.

- Pixel matrix readout architecture
 - Internal bus speeds:
 - Column bus : 8bit@40MHz
 - Output bus : 16bit@320MHz
 - □ Total ASIC output : ~12.8 Gb/s.
 - Buffering in :
 - Super pixel : 2 clusters
 - Super pixel group FIFO : ~400 bit
 - Output FIFO: multi kbyte
- Simulation shows losses< 0.5% in highest occupancy conditions.