

o Low operating temperature o Reduction of material budget

Dryout Measurement

- o Dryout: pipe walls not in touch with liquid anymore
- o No heat dissipation by evaporating CO₂
- → Rapid rise in detector temperature
- o Determine minimal required flow for applied heat load
- o In real system: apply safety factor

Parallel Cooling Branches

- o Keep pressure drop constant
- o Apply heat load and determine flow
- o High heat load \rightarrow low mass flow
- o Influence on parallel piping
 - → insert restrictions in each branch

Temperature Distribution over Det. Pipe

o Detector temperature constant, even with heat load o -40°C can be reached

Pressure Drop

o 2-phase flow: pressure drop = temperature drop o Measure pressure gradient \rightarrow precise control of det. temp. o Determine Δp between inlet and outlet of detector pipe

Summary

o CO₂ cooling system with thin pipes o Detector temperature: -40°C to +20°C

Outlook

o Investigate different pipe routings o Measure thermal contacts o Operation of parallel piping

References

- B. Verlaat et al., CERN-2008-008, CO₂ cooling for HEP experiments
 J. Merz, Diploma Thesis, Studien zur Verringerung des Material-Budgets f
 ür einen neuen CMS-Spurdetektor am SLHC