Level-1 jet trigger hardware for the ALICE electromagnetic calorimeter at LHC

Olivier BOURRION

LPSC Grenoble

September 20, 2010

- 2 Trigger requirements
- 3 Summary Trigger Unit
- 4 Focus on custom serial protocol
- 5 Trigger algorithm implementation
- 6 Conclusion

- 2 Trigger requirements
- 3 Summary Trigger Unit
- 4 Focus on custom serial protocol
- 5 Trigger algorithm implementation
- 6 Conclusion

ElectroMagnetic CALorimeter (EMCAL) in ALICE

- ALICE has been upgraded with large acceptance calorimeter (increased the electromagnetic coverage by one order of magnitude)
 - Enhance its capabilities for measuring jet properties
- EMCAL design has been optimised to:
 - measure the neutral energy component of jets
 - 2 provide fast and efficient L0, L1 trigger for hard jets

Detector overview

- Towers composed of 77 layers alternating lead and scintillator
- Signal readout via optical fiber + APD
- $\bullet~{\sf EMCAL} \rightarrow 10$ complete SM and two $1/3~{\sf SM}$
- \Rightarrow 12288 towers to readout

One supermodule electronics

- FEE (Front End Electronics)
 - 32 analogue inputs
 - Generates 8 fastOr for TRU \rightarrow module analogue sum (2 \times 2 tower)
- TRU (Trigger Region Unit)
 - Receives and digitizes 96 fastOR signals from 12 FEE at the machine clock frequency (40.08 MHz)
 - Computes local L0 trigger (to transfer to Central Trigger Processor)
 - Receives forwarded confirmed L0 from RCU
- RCU (Readout Control Unit)
 - Receives trigger sequence from CTP (confirmed L0, L1, L2)
 - Readout of 18 FEE (1/2 SM=1.5 TRU region)
 - Readout of 1 (or 2) TRU

TRU L0 trigger algorithm

- Fastor signal digitization at LHC clock (40.08 MHz)
- 2 Digital integration over a time sliding window of 4 samples

- In preparation for L1: Time integrated values are also stored in a circular buffer
- Energy summed over sliding window of 4 × 4 towers (2 × 2 fastOR) and compared to a minimum level threshold.

- 3 Summary Trigger Unit
- 4 Focus on custom serial protocol
- 5 Trigger algorithm implementation
- 6 Conclusion

- Reduce data rate to recording manageable rate, required rejection:
 - 10-20 for Pb+Pb (small collision rate, rejection by High Level Trigger)
 - $\sim\!3000$ for p+p (high collision rate, low event data volume \rightarrow HLT rejection ineffective here, all at L0/L1)
- Maintain L1 triggers efficiency against collision centrality: threshold correction by multiplicity from V0 (2 forward array of scintillators counters (A and C side) serving as centrality detector)

L1 trigger hardware developpement motivations (2/2)

- L0 trigger: OR of the 32 L0 calculated by the TRU
- L1-gamma trigger: Same patches as L0, but no boundary effect
- L1-jet trigger: Energy summed over a sliding window of 2 × 2 subregions (1 subregion = 4x4 FastOr = 8x8 towers)

1 Overview

2 Trigger requirements

3 Summary Trigger Unit

4 Focus on custom serial protocol

5 Trigger algorithm implementation

6 Conclusion

Summary Trigger Unit (1/2)

- STU hardware is FPGA centered (XC5VLX110FF1153)
- Data agregation required → connection to all TRUs (custom serial protocol needed)
- Trigger, Timing and Clocking interface: reference clock for experiment synchronisation and trigger messages for readout
- Triggers forwarded to the CTP inputs (L0@1.2 µs, L1@6.2 µs)
- Dedicated Data Link, optical fiber running at 200 MB/s
- Detector Control System interface via a magnetic less Ethernet interface

- L1 threshold is computed event per event according to $A.V0^2 + B.V0 + C$, 2nd order fit EMCAL energy=f(V0,HV)
- STU works as a readout subsystem as well
 - Returns triggering indexes and thresholds used on a per event basis.
 - Primitive triggering data can be returned for debugging
 - Multievent buffering is implemented
- DCS used for FPGA configuration and experiment configuration (thresholds, delays, ...)

STU board

32 TRU inputs

T0-B1 = Top is input 0, Bottom is input 1

Olivier BOURRION L1 hardware triggers for EMCAL, TWEPP-10

14 / 25

- 2 Trigger requirements
- 3 Summary Trigger Unit
- 4 Focus on custom serial protocol
 - 5 Trigger algorithm implementation
- 6 Conclusion

Custom serial protocol

Arguments for custom protocol

- Original TRU design equiped with a RJ45 spare connector directly linked to FPGA
- Transmission latency had to be kept low
- Hardware simplicity
 - no optical transceiver
 - single FPGA (ISERDES and IODELAY feature)
- TRU needed low jitter clock from STU and a line to forward local L0

Solution chosen

- 4 pairs LVDS link over CAT7 Ethernet cable: skew \searrow , attenuation \searrow
 - 1 pair for LHC reference clock to TRU
 - 1 pair for L0 candidate from TRU
 - $\bullet\,$ 2 pairs for data, each pair at 400 Mb/s, MSB first
- DC balancing: interpacket data constantly transmitted
- Interpacket data also used as synchronisation pattern
- Latency: fastOr is coded on 12 bit data ightarrow 96 imes 12/800 = 1.44 μs

Link synchronisation

Links synchronized by FSM in the FPGA before each start of run.

- Oata phase alignement with IDELAY block
 - \bullet IDELAY_CTRL uses 4×LHC clock as a reference, period ${\sim}2.5$ ns
 - tap value: 2.5 ns/32=78 ps
 - $\bullet\,$ for all tap values, input data is delayed and stable reception is checked $\rightarrow\,$ stability zone
 - stability width (~eye opening) is function of: period, signal degradation, deserializer input setup and hold times, clock jitter
 - data delay applied is the middle value of the stability zone

- Ocharacter alignement with BITSLIP feature of ISERDES block
 - Looking for known pattern = $0 \times C03$

Olivier BOURRION	L1 hardware triggers for EMCAL, TWEPP-10
110000 ← GOOD	110000
011000	011000
001100	001100
000110	000110
000011	000011 ← GOOD
100001	100001
MSB	LSB

Link performance

18 / 25

1 Overview

- 2 Trigger requirements
- 3 Summary Trigger Unit
- 4 Focus on custom serial protocol
- 5 Trigger algorithm implementation

6 Conclusion

Trigger and timing constraints

- $\bullet\,$ Fixed latency between interaction and trigger $\rightarrow\,$ event identification
- ALICE timing values:
 - candidate L0 arrival @ CTP inputs: 800 ns (32 BC!!!)
 - confirmed L0 arrival @ subdetector: 1.2 μs
 - candidate L1 arrival @ CTP inputs: 6.1 μs
 - $\bullet\,$ confirmed L1 arrival @ subdetector: 6.5 μs

Olivier BOURRION

L1 hardware triggers for EMCAL, TWEPP-10

20 / 25

Triggers processing preliminary operations

Upon confirmed L0 reception, TRUs send approriate time integrated data from circular buffers to the STU. ADC #0 first, ADC #95 last. For 1 region covered by TRU:

Row/col

- \bigcirc Slightly after L0, V0 sends its A and C plate information to STU \rightarrow thresholds computation
- In preparation for L1 photon processor, data mirroring is applied for data from A side by using data from ADC #95 first, new EMCAL map

Olivier BOURRION

21/25

Photon trigger processing

Jet trigger processing

• No major difficulty, starts with a map of subregions instead of fastor

- Jet processor is somewhat similar to one of those described for photons, differences are:
 - 192 subregions to process (1 subregion=8x8 towers)
 - 11 patches of 2 × 2 in height yields 2 columns of 11 accumulators/comparators

- 2 Trigger requirements
- 3 Summary Trigger Unit
- 4 Focus on custom serial protocol
- 5 Trigger algorithm implementation

Conclusion / status

- STU has been installed for a year
 - System interfaces validated (TTC, DDL, DCS, CTP, TRUs)
 - L0/L1 commissionned
 - Run in p+p with fixed thresholds (A=B=0)
 - Data validation in progress
- Oustom serial protocol validated in real condition with extensive data readout
- Good tradeoff between parallel and serial computation
 - Internal FPGA logic used at ${\sim}50\%$ only! ${\rightarrow}$ major upgrades remain possible
 - 2961 photon 2×2 patches processing takes 825 ns
 - 165 jet 64 \times 64 patches processing takes 1465 ns
 - Remaining margin 2985-2290=695 ns
- 2 STUs will be used in DCAL (Di jet CALorimeter)