Displacement damage studies of power LDMOS devices for DC-DC conversion

<u>S. Díez</u>, M. Ullán, P. Fernández-Martínez, I. Cortés, S. Hidalgo, D. Flores, G. Pellegrini, M. Lozano, R. Sorge, D. Knoll

TWEPP 2010, Aachen, September 23rd

Outline

- Motivation
- LDMOS devices from IHP SGB25V GOD technology
- Neutron irradiations
- Additional gamma irradiations
- Other studies
- Conclusions

Motivation

- DC-DC powering for strips
 - Laterally Diffused MOS (LDMOS) devices constitute the power switches in buck converters:
 - Very high cut-off frequency, low losses (low R_{ON})
 - Implemented into standard (Bi)CMOS technologies (easier than VMOS)

- Radiation tolerance must be investigated
 - Displacement damage investigated with neutron irradiations (complementary to F. Faccio studies, X-rays, p)

LDMOS devices from IHP

- 2nd generation devices from IHP GOD module (Gate Overlapped Drift)
 - Implemented on 0.25 μm SGB25V SiGe BiCMOS technology
 from IHP Microelectronics
 F
 - NLDMOS and PLDMOS devices:
 - $L_{ch} \times W_{ch} = 2 \times (0.6 \times 5) \ \mu m^2$ (drawn)
 - L_{Drift} = **0.6** μm (real)
 - T_{ox} ~ 5 nm
 - V_{BR} = 22 (-16) V
 - f_T = 20 (10) GHz
 - R_{ON} = 5 (12) Ω·mm
 - V_T = 0.6 (-0.53) V

S. DIEZ, IVVERPIO, SEPTEILIDEI 25", 2010

Radiation damage mechanisms

- Nonionizing radiation damage:
 - Atomic displacement
 - Vacancies, interstitials, divacancies, impurity atoms,...
 - DEFECTS on the silicon crystalline lattice = energy levels in the bandgap
 - Thermal generation of e/h pairs via midgap levels
 - Thermal recombination of e/h pairs via midgap levels
 - Scattering centers for carriers
 - Others: type inversion, transient capture of carriers,...
 - "Bulk" effect
 - Normally of secondary concern for MOS devices
 - May be important for LDMOS devices due to the drift region

Experiment

- Neutron irradiations (atomic displacement damage)
 - TRIGA nuclear reactor at JSI, Ljubljana
 - 2x10¹³, 2x10¹⁴, 6x10¹⁴, 1x10¹⁵, 2x10¹⁵, 4x10¹⁵, 5x10¹⁵ cm⁻² (1 MeV n_{eq})
 - "Parasitic" Total Ionizing Dose (TID): 100 krad(Si) per every 10¹⁴ n_{eq}/cm²
 - Cd shield to avoid thermal neutrons
 - 4 devices per type and fluence
 - Devices with terminals floating during irradiations
 - Annealing: several measurements at RT + 7 days @ 100°C

Very small changes up to 1x10¹⁵ n_{eq}/cm²

• Threshold voltage shift: $\Delta |V_T| = |V_{Tf}| - |V_{T0}|$ (@ V_D = 50 mV)

- Max \sim -50 mV for NLDMOS
- Max ~ 70 mV for PLDMOS
- Mostly related to TID (1-5 Mrad(Si) for 1x10¹⁵- 5x10¹⁵ cm⁻²)
 - Oxide charges + interface traps: initial decrease for NLDMOS, monotonic V_T

• On-resistance variation: $\Delta R_{ON} = (R_{ONf} - R_{ONO}) / R_{ONO} (\%)$

- Max \sim 35 % for NLDMOS
- Max ~ 300 % for PLDMOS

onal de Microelectrónica

- Main effect of displacement damage
 - Scattering centers in the drift region
 - Decrease of carriers mobility => Increase of R_{ON}

• Leakage current density: I_{leak}/W (@ $V_{GS} = 0, V_{D} = 15 V$)

- Observable increase of I_{leak}
- Max < 0.1 nA/ μ m both for NLDMOS and PLDMOS
 - Related to thermal generation of e/h pairs via near-midgap levels induced by atomic displacement

- Annealing:
 - $2x10^{15}$, $4x10^{15}$ and $5x10^{15} n_{eq}/cm^2$
 - Devices with terminals floating (same condition as irradiation)
 - ~ 41 days @ RT (5 measurements)
 - + 7 days @ 100°C

• Annealing: $\Delta |V_T| = |V_{Tf}| - |V_{T0}|$ (@ $V_D = 50$ mV)

- Little changes of $V_{\scriptscriptstyle T}$
- Expected behavior for ionizing radiation damage
 - Partial annealing of oxide traps, increase of interface traps
 - ΔV_T less negative for NLDMOS
 - V_T more negative for PLDMOS

- Little changes of R_{ON} for NLDMOS, as expected, although visible initial change consistently observed w.r.t. post-irrad measurement
- Anomalous evolution of R_{ON} for PLDMOS
 - Related to annealing dynamics of the radiation-induced defects producing

- Decrease of ${\rm I}_{\rm leak}$ both for NLDMOS and PLDMOS
 - Annealing of defects producing e/h generation in the channel region of the device

Additional gamma irradiations

- Motivation: Identify and separate ionizing and displacement damage from the neutron irradiations
- ⁶⁰Co source at CIEMAT, Madrid (NAYADE water-well source)
 - 0.65, 5, 10 Mrad(Si)
 - Devices with floating terminals (same as neutrons)
 - 4 devices per type and dose
 - Annealing: same to neutron irrads

Results (gamma irrads)

• $\Delta |V_T| = |V_{Tf}| - |V_{T0}|$ (@ $V_D = 50$ mV)

- Max $\Delta V_T \sim$ + 20 mV for NLDMOS devices
 - Quantitatively in accordance with ΔV_{T} observed after neutron irrads
 - "Rebound" not observed: probably interface traps dominant in this case
- Max $\Delta |V_T|^2$ + 60 mV for PLDMOS devices

Nacional de Microelectrónica

• Same ΔV_T shift observed after neutron irrads

hifts observed after n irrads are mostly due to parasitic TID

Results (gamma irrads)

• $\Delta R_{ON} = (R_{ONf} - R_{ONO}) / R_{ONO} (\%)$

- Negligible changes of R_{ON} for NLDMOS
- Little changes of R_{ON} (related to ΔV_T) for PLDMOS
- R_{ON} change observed in neutron irrads induced by atomic displacement damage

Results (gamma irrads)

- Negligible changes of I_{leak} for NLDMOS and PLDMOS
- I_{leak} change observed in neutron irrads induced by atomic displacement damage

Standard MOS devices of IHP SGB25V tec

- Several standard MOS devices also present in the irradiation test chip
 - Very similar channel structure as LDMOS devices
 - Irradiated at the same neutron fluences, under the same conditions as the LDMOS devices

- Very similar degradation of V_T as LDMOS devices
 - Confirms that V_T change in LDMOS is due to TID effects in the channel region

Simulations

- Technological and electrical simulations of IHP GOD LDMOS devices
- Status:

nal de Microelectrónica

- Pre-irrad electrical behavior reproduced (starting point)
- Radiation damage mechanisms being implemented at the moment

Conclusions

- Nonionizing radiation tolerance of 2nd generation SGB25V GOD LDMOS devices from IHP studied
- Degradation of electrical characteristics only observable at fluences equal or higher than 1x10¹⁵ n_{eq}/cm²
- NLDMOS & PLDMOS devices exhibit small shifts of V_T and I_{leak} at the highest fluence (5x10¹⁵ n_{eq}/cm²)
- Moderate increase of $\rm R_{ON}$ for NLDMOS devices at 5x10^{15} $\rm n_{eq}/cm^2$
- R_{ON} of PLDMOS devices increases dramatically at 5x10¹⁵ n_{eq}/cm^2
- On the whole, NLDMOS devices are suitable for its application in the SLHC from the p.o.v. of nonionizing radiation tolerance
- PLDMOS devices seem more "troubling"

Future work

- Ongoing simulations will help understand PLDMOS behavior and radiation damage mechanisms
- Understanding 3rd generation issues in collaboration with IHP and F. Faccio
- Study the new LDMOS technology generations from IHP
- SEB and SEGR studies

Thank you for your attention

S. Díez, TWEPP10, September 23rd, 2010

NLDMOS detailed cross-section

Mohapatra et al., ESSDERC proc., 2005

S. Díez, TWEPP10, September 23rd, 2010

Gamma irrads on standard MOS devices

S. Díez, TWEPP10, September 23rd, 2010