Performance of the ATLAS Detector and its Electronics under First Beam Conditions

- Detector Status
- Data Taking, Data Quality
- Performance
 - Timing
 - Trigger
 - Track momentum scale
 - Electromagnetic energy scale
 - Missing transverse energy
 - Jet energy scale
 - Muon reconstruction

Thilo Pauly (CERN)

TWEPP 2010 Aachen

2010: An exciting year so far ...

ATLAS Detector ...

TWEPP 2010 Aachen

ATLAS Trigger ...

Level-1:

40 MHz

- Implemented in hardware,
- Muon + Calo based, coarse granularity
- Selection on e/ γ , τ /hadron, μ , jet candidates and on energy sums and E_T^{miss}
- Define regions of interest (ROIs) <75 kHz

Level-2:

- Implemented in software
- Seeded by level-1 ROIs, full granularity
- Includes tracking information

~ 3kHz

~300 Hz

Event Filter:

- Implemented in software
- Full event building
- Refine Level-2 decision
- Offline-like algorithms for physics signatures

Trigger and Data Flow Architecture

Detector Status ...

Working fraction of the ATLAS detector end June '10:

Sub-Detector	Number of channels	Approx. operational fraction (%)
Pixels	80 M	97.4
SCT Silicon Strips	6.3 M	99.2
TRT Transition Rad. Tracker	350 k	98.0
LAr EM Calorimeter	170 k	98.5
Tile Calorimeter	9800	97.3
Hadronic Endcap LAr Calorimeter	5600	99.9
Forward LAr Calorimeter	3500	100
LV1 Calo Trigger	7160	99.9
LV1 Muon RPC Trigger	370 k	99.5
LV1 Muon TGC Trigger	320 k	100
MDT Monitored Drift Tubes	350 k	99.7
CSC Cathode Strip Chambers	31 k	98.5
RPC Barrel Muon Chambers	370 k	97.0
TGC Endcap Muon Chambers	320 k	98.6

For all systems > 97% of channels are operational, in addition have built-in redundancy in most systems. Overall detector is performing very well, but a few issues with component failures to watch out for ...

see [188] T.Flick, VCSEL failures in	see [113] T. LIU, Optical Link for ATLAS
ATLAS	Liquid Argon Calorimeter

Data Taking and Data Quality ...

Timing ... LHC 40 MHz Clock Stability

- LHC clock not exactly stable:
 - Ramp (acceleration)
 - 87 Hz protons
 - 550 Hz ions
 - Frequency steps:
 - chromaticity measurements (+/- 6 Hz), loss map RF trims (+/- 90 Hz)
 - LHC resync
 - internal/external clock switch
- Many PLLs in ATLAS
 - most critical QPLL (Quartz Crystal Based Phase-Locked Loop for Jitter Filtering Application in LHC)
 - narrow locking range

- During data-taking, all QPLLs need to stay locked
 - otherwise data corruption, BUSY, readout inefficiencies
- Since data taking already starts before the ramp, we had unlocks at first
 - needed a revision of the configuration scheme for our QPLLs (thanks to S. Baron, P. Moreira)

- ATLAS' way to solve the problem:
 - use a well-defined frequency during configuration process (GPS-based function generator at injection frequency)
 - force a QPLL reset during configuration process, in the right order (top-to-bottom)
 - direct reset via reset pin
 - indirect reset: phase jump via TTCrx unlocks QPLL (automatic mode)
 - tried frequency jump, which didn't seem to work properly
 - for few sub-detectors: stop-less recovery, within a few seconds re-synchronize failing detector parts

see [110] D. Olivito, ATLAS Transition Radiation Tracker see [54] T. Hayakawa, ATLAS Endcap Muon Trigger

Timing ...

LHC timing

• RF cogging: phase rotation of beam 2 wrt beam 1 to longitudinally center the collision in the IP

Trigger timing

 most Level-1 triggers are timed-in within 1 BC or better
see [54] T. Hayakawa, Performance of

see [54] I. Hayakawa, Performance of the ATLAS Endcap Muon Trigger

see [78] J. Brancinik, ATLAS Level-1 Calorimeter Trigger

- few cases with +/- 1 BC
 - being improved, but OK for now with large bunch spacing
 - stretching to 3 BCs and forced coincidence with colliding bunches
- trigger latency (collision to trigger output): 1750ns

Sub-detector timing

Example: LAr •Timing resolution ~1 ns, goal 100ps •Beam timing needs to be stable wrt LHC clock

Timing ... LHC Clock Drift

- Many sub-detectors confirmed this
- Correction to keep within +/- 0.5ns using RF2TTC fine delay

TWEPP 2010 Aachen

ATLAS Trigger ...

Level-1 trigger rates evolve guickly with increasing • luminosity

 \rightarrow successively enable active rejection of events for various High Level Triggers (HLT)

- \rightarrow Recorded physics rate during stable beams ~ 300 Hz.
- Validation of trigger algorithms with data is a crucial step • before chains become actively rejecting!
- First high-level triggers to be run in activate rejection • mode are low p_{T} electromagnetic chains, followed by tau 10^{-1} and muon chains.

L1 MU0

L1 MU6

▲ L1 MU10

L1 2MU0

rate [kHz] 1 1 Muon Trigger Rate [Hz] ATLAS Preliminary ATLAS Preliminary -√s= 7 TeV, Data 2010 √s= 7 TeV. Data 2010 EM2 MinBias Trigger 10 ۔ 0.8 ت Pile-U Scintillators MBTS_1 (×0.05) 0.6 0.4 Ξ EM3 300 Hz J5 0.2 TAU5 EM5 MU0 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10⁻¹ 0 Luminosity [10²⁹cm⁻²s⁻¹] instantaneous luminosity [10³⁰cm⁻²s⁻¹]

More information:

see [38] M. Stockton, ATLAS Level-1 Central Trigger

see [54] T. Hayakawa, Performance of the ATLAS Endcap Muon Trigger

see [78] J. Brancinik, ATLAS Level-1 Calorimeter Trigger

see [144] T. Martin, Minimum **Bias Triggers in ATLAS**

TWEPP 2010 Aachen

Thilo Pauly

Inner Detector Track Momentum Scale

• At low p_T : large progress from early peaks few days after first collisions to cascade decays

low-p_T momentum scale is known to few ‰ level, multiple scattering dominating resolution !

- Today we know detector material distribution to ~ 10%
- Use γ → ee conversion + secondary hadronic interactions for mapping, already spotted few inconsistencies between data and MC ! Aim is ~% level

Electromagnetic Shower Energy Scale ...

Missing E_{T}

Missing E_{T} : Min. bias events and p_{t} -enhanced L1Calo samples, full calorimeter coverage

Jet Energy Scale

MC-based p_T , η dependent Jet Energy Scale:

- Uncertainties 10% for low p_T , 7% for p_T >100 GeV
- validated with test-beam and collision data

~ 3.5 months after start of LHC physics running @ 7 TeV: enter new territory above Tevatron reach !

Muon Reconstruction

Resolution

0.09

0.08

0.07

0.06

0.05

0.03

0.02

0.01

- Expected momentum resolution at ٠ high p_⊤ is $\Delta p_{T}/p < 10\%$ up to 1 TeV
- Comparison between tracks in ٠ Muon Spectrometer and Inner Detector
- · Initial understanding of the detector from analysing cosmics data, agrees well with collisions results

From J/ψ di-muon mass peak: absolute momentum scale known to $\approx 0.2\%$, momentum resolution known to $\approx 2\%$ for few GeV

Summary and Outlook

- First few months of LHC running @ 7 TeV has already yielded a wealth of physics results
- All ATLAS sub-detectors are working very well, no show-stopper, good data quality and data taking efficiency of > 94 %
- High level trigger algorithms enabled for active rejection in many of the main trigger chains
- Rapid progress in understanding the detector performance, employing more and more data-driven methods in addition to data-MC comparison

Rest of 2010 promises to be as exciting as the previous months ...