

Design and Assessment of a Robust Voltage Amplifier with 2.5 GHz GBW and >100 kGy Total Dose Tolerance

Jens Verbeeck TWEPP 2010

Institute for the Promotion of Innovation by Science and Technology in Flanders

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

- Introduction
- Radiation and temperature effects
- Constant g_m amplifier
- Matching structure
- Conclusions

Introduction

- Radiation and temperature effects
- Constant g_m amplifier
- Matching structure
- Conclusions

Introduction

- Development of optical instrumentation and communication for nuclear and high temperature environments
- Applicable for
 - > MYRRHA
 - ► ITER
 - ≻ LHC
 - Space

Optical instrumentation

- TIA: Transimpedance amplifier
- LA: Limiting amplifier

AGC: Automatic gain controller TDC: Time to digital converter

KATHOLIEKE UNIVERSITEIT

Optical instrumentation

- LIDAR with ps accuracy, distance =10m
- Current status
 - TDC with ps resolution developed and irradiated up to 5MGy (Ying Cao)
 - November tape-out receiver channel

- Introduction
- Radiation and temperature effects
- Constant g_m amplifier
- Matching as a function of radiation dose
- Conclusions

Radiation : Introduction TID

Temperature: effects

Presentation: Jens Verbeeck

- Introduction
- Radiation and temperature effects
- Constant g_m amplifier
- Matching as structure
- Conclusions

Optical receiver

Classical building blocks

- Transimpedance amplifier (TIA)
- Post amplifier (PA)
- Time to digital convertor (TDC)

Constant g_m amplifier: Why?

Radiation/temperature causes variation in TIA parameters

$$Z_{TIA} = \frac{Rf \cdot A_0}{A_0 + 1} \qquad BW = \frac{A_0}{2 \cdot \pi \cdot R_f \cdot C_{in}}$$

$$f_{nd} = \frac{1}{2 \cdot \pi \cdot R_f \cdot C_{out}} \qquad GBW = \frac{A_0}{2 \cdot \pi \cdot C_{in}}$$

$$A_0 = g_{m1} \cdot r_{out 1} \cdot g_{m2} \cdot r_{out 2}$$

> g_m and r_{out} variable in formula A_0

Make gain independent of gm and r_{out}

Constant g_m amplifier: Why?

Presentation: Jens Verbeeck

Constant g_m amplifier: Operation

$$I_{OUT} = I_{REF}$$
$$V_{GS 2} = V_{GS 1} + I_{OUT} * R_{I}$$

$$g_m = \sqrt{2 \cdot \mu_n \cdot C_{ox} \cdot (W / L)_5 \cdot I_{D5}}$$

$$g_{mx} = \frac{2}{R_B} (1 - \frac{1}{\sqrt{B}}) \sqrt{\frac{(W / L)_5}{(W / L)_1}} \frac{\mu_x}{\mu_n}$$

 $A \approx 2 \frac{R_L}{R_B} (1 - \frac{1}{\sqrt{B}})$

[B.Razavi] [Sean Nicalson et al.]

- R_{DSTOT} >> RL
 - ➤ Transistor length ↑
 - Trade-off: BB <=> temp/RAD tolerance

Presentation: Jens Verbeeck

Temperature simulations

• Degradation with bias : 2.5 %

Radiation simulations

• Degradation with bias : 0.85 %

Amplifier irradiated up to 300kGy

Results

Temperature drift 5.6 % or 343 ppm/°C

Gain before irradiation

1.0E7

Frequency[Hz]

1.0E8

Gain after irradiation

1.0E6

5

0

Radiation up to 100 kGy Gain degradation 4.5%

1.0E9

Results: Radiation

Presentation: Jens Verbeeck

Layout

- Introduction
- Radiation and temperature effects
- Constant g_m amplifier
- Matching structure
- Conclusions

- Standard deviation between identical components fabricated on the same chip =>small statistic variations = MISMATCH
- Good matching
 - good PSRR, CMRR
 - Important for replica biasing
 - Reduces offset
- Matching of V_{th} depends strongly on area transistor

$$\sigma_{vth} = \frac{A_{vth}}{\sqrt{W * L}}$$

Matching

Layout transistors on chip

- Drains connected in each column
- Gates connected in each row
- Shared source and bulk
- > 6 regular transistors, 6 Enclosed layout transistors [G. Annelie et al.]

Radiation effects up to RD of 100kGy

Regular NMOS transistors

- Decrease of V_{TH}
 - Rebound effect
- RINCE effect [F. Faccio]
 - Different effect for large gates
 - Radiation Induced
 Narrow Channel Effect
- Standard deviation V_{TH} –shift! =>

ELT transistors

No significant effects

$$\frac{\Delta gm}{gm} = \frac{1}{V_{GSTH} \left(1 - \frac{1}{\sqrt{B}} + \frac{V_{THsens}}{V_{GSTH}}\right)} \Delta V_{THsens}$$

Introduction

- Radiation and temperature effects
- Constant g_m amplifier
- Transistor measurements
- Conclusions

Conclusions

Effects of radiation and temperature

- Change of transistor parameters
- Varying gain
- Gain can be held stable with constant g_m amplifier
 - BW and GBW of optical receiver guaranteed
 - Open loop control
 - \succ Generate bias voltages for whole chip with g_m biasing
 - Trade off: bandwidth temperature tolerance
 - Trade off: current consumption & voltage headroom rad. Tolerance
 - ➤ Larger V_{GS}-V_{TH} => V_{DSsat} ↑↑ ⇔ difficult to keep transistors in saturation at high temperatures.

Matching results

- $\succ\,$ Decrease of V_{TH}
- \succ V_{TH}-shift depending on transistor width
- > Standard deviation V_{TH} –shift

Questions

Acknowledgments to:

Institute for the Promotion of Innovation by Science and Technology in Flanders

STUDIECENTRUM VOOR KERNENERGIE CENTRE D'ÉTUDE DE L'ÉNERGIE NUCLÉAIRE

References

- M. Manghisoni, L. Ratti, V. Re and V. Speziali, "Radiation hardness perspectives for the design of analog detector readout circuits in the 0.18-µm CMOS Generation", Transactions on nuclear science, VOL. 49 NO. 6, December 2002
- 2. Hugh J. Barnaby, "Total-Dose Effects in Modern Integrated Circuit Technologies" IEEE NSREC, 2005
- F. Faccio, G. Cervelli, "Radiation-Induced Edge effects in Deep Submicron CMOS transistors", Transactions on nuclear science, VOL. 52 NO. 6, December 2005
- 4. M. Willander and H. L. Hartnagel (eds.), High Temperature Electronics, Chapman & Hall, London, 1997.
- P. C. de Jong, G. C. M. Meijer, and A. H. M. van Roermund, "A 300 °C dynamic feedback instrumentation amplifier," IEEE J. Solid-State Circuits, vol. 33, no.12, pp. 1999-2009, Dec. 1998.
- 6. Sean Nicalson and Khoman Phang, "Improvements in biasing and compensation of cmos opamps", ISCAS 2004
- 7. B. Razavi, "Design of analog integrated circuits"
- 8. G. Anelli et al.," Radiation tolerant VLSI circuits in standard deep submicron CMOS technologies for the LHC experiments: Practical design aspects," *IEEE Trans. Nucl. Sci.*, vol. 46, no. 6, pp. 1690–1696, Dec.1999.