

Enhancement of the ATLAS Trigger System with a Hardware Tracker Finder FTK

TWEPP 2010, Aachen, Germany

Outline

- Motivation
- FTK approach
- System overview and component functionality
- Performance
 - Single particle efficiency and timing
 - Identifying physics objects at 3×10³⁴
- Summary

Trigger with Tracks

- Enhancement of the capability to examine the event characteristic at the LVL1 rate with all tracks
- Identification of heavy fermion objects originated from possible new physics scenarios (e.g., Higgs decay) in the enormous QCD jet background
 - b-jets: displaced vertices or tracks with large impact parameter
 - $\tau\text{-jets:}$ 1 or 3 tracks in a narrow cone with a surrounding isolation region
- Effective lepton selection with tracking isolation

The challenge & the Solution

- The increasing LHC luminosity leads higher rate and larger event size.
 - The trigger problem at high P_T can't be solved by just increasing thresholds
 - Suppression of the higher background rates will require more sophisticated algorithms in earlier trigger levels
 - Pileup increases the need for tracking and its execution time
- With introducing FTK, the global tracking would be completed at the beginning of the Level-2 trigger (LVL2). Thus the LVL2 processing power can be used more on needed sophisticated algorithms.

ATLAS TDAQ+FTK

Fast TracKer (FTK) Approach

Use hardware to perform the global tracking in two steps pattern recognition and track fit

Pattern recognition in coarse resolution (superstrip → road)

Δ

Track fit in full resolution (hits in a road) $F(x_1, x_2, x_3, ...) \sim a_0 + a_1 \Delta x_1 + a_2 \Delta x_2 + a_3 \Delta x_3 + ... = 0$

Road size to balance the workload between two steps

TWEPP, 09/23/2010 Jinlong Zhang

Pattern Recognition

Jinlong Zhang

Content-addressable Memory (CAM)

- Take user data as input rather than the address
- Search the entire memory in a single operation
- Used often in network search elements
- Available commercially and in HEP custom design (limited)
 - INFN AM able to identify correlation among input data words received on different clock cycles

	AM INEN (2004)	CAM (latest)
		CAM (latest)
Availability	Non-commercial	Good
Technology	180 nm	55 nm
Speed	40 MHz	500 MHz
Size	(6x16) X 5K	36X 1024K, 576X 64K
Max Channels	384K	576
Flexibility	Low	High
Price	10-15 €	O (100-200 €)
	INFN	NETLOGIC

- 1) IEEE Trans.Nucl.Sci.53:2428-2433,2006
- 2) http://www.netlogicmicro.com/Products/Layer2/Layer2-3.htm

TWEPP, 09/23/2010 Jinlong Zhang

Track Fitting

- Determine the helix parameters and χ^2
- Fit with the local silicon hit coordinates (one module in each layer) in linear

$$p_i = \sum_{j=1}^{14} a_{ij} x_j + b_i$$

- P_i : the helix parameters and χ^2 components
- X_i: the hit coordinates in the silicon layers
- a_{ij} & b_i: prestored constants determined from full simulation or real data track
- Very fast in DSPs (~1 ns per track)

System Overview

- 8 φ sectors, each with one crate,
 8 (12) crates @ 10³⁴ (3X10³⁴) total
- 4X2 η-φ towers in each sector, each tower with one slot unit
- Overlaps to maintain high efficiency

PIX (3 layers) & SCT (4 double layers)
Architecture of 11 layers in one step (PIX 3 + SCT 4 axial + SCT 4 stereo)

- Options:
 - -7 layers (PIX 3 +SCT 4 axial)
 - $-SCT^{1st} PIX^{2nd} (8 \rightarrow 4)$

System Functional Sketch

TWEPP, 09/23/2010 Jinlong Zhang

Δ

Data Formatter (DF)

- Receive the silicon hits from the pixels and SCT
- Perform cluster finding (2D in pixels)
- Sends the cluster centroids to the appropriate η - ϕ towers in the core crates

Δ

Process Unit (AM board)

- Contain 4 mezzanine cards, each connected to a separate DO, TF, HW chain.
- The mezzanine card holds 32 custom standard-cell content-addressable memory chips
 - 3.7K patterns per existing AM chip (for 8 layers); 1.8 W power consumption per chip
 - 60-135K patterns possible for the next generation chip (65-90nm, custom cell, larger size, 3D technology)

1) Associative Memory design for the FastTrack processor (FTK) at ATLAS (ATL-DAQ-PROC-2010-013)

• Tree Search Processor (TSP) improves the resolution by a factor 2 to reject fake roads before track fitting

Process Unit (AUX card)

- Data Organizer (DO)
 - Store full resolution hits in a smart database
 - Send hits at a coarser resolution to the Associative Memory (AM) for pattern recognition
 - Fetch the hits in a road and send to the Track Fitter for a matched pattern
- Track Fitter (TF)
 - Use DSPs in an FPGA to calculate the helix parameters and the components of the χ^2
 - store the constants in the internal FPGA memory
 - Expect ns per track with 288 DSPs in the FPGA being considered
- Hit Warrior (HW)
 - Remove duplicate tracks defined as having more than N hits in common with another track
 - Employ an associative memory built on the fly and implemented in an FPGA

Processor Unit Prototype

TWEPP, 09/23/2010 Jinlong Zhang

Interface to the Current TDAQ

- Input
 - Dual output SLINK interface in the RODs of PIX and SCT
- Output
 - ROD: The tracks from the second stage that pass a χ^2 cut are sent to a ROD
 - ROS: Special configuration or special running mode is necessary.
 - The typical output event size for all tracks with PT > 1 GeV/c at 3×10³⁴ is 5.0 kB.
 - Data is desirable at the full LVL1 rate for the LVL2 algorithms.

Single Track Efficiency

- The overall efficiency has not yet been optimized
- The dip at η = 0 is an artifact of how we produced the pattern bank
- The dip near $|\eta|$ = 1.2, the region between the barrel and the forward, will be optimized

Timing

Δ

- WH(bb) MC events are used.
- FTK finishes global tracking in 25 μ s at 3×10³⁴.
- Current LVL2 need 25 ms per jet or lepton RoI at 3×10³⁴ and the number of RoIs is large

Summary

- Global tracking can make a significant contribution to the ATLAS trigger.
- A conceptual design shows that an affordable FTK will take less than 100 $\mu s/event$ at the LHC design luminosity and beyond, and have excellent physics performance.
- The implementation can help ATLAS even at low luminosity.

Single Track Helix Parameter Resolution

TWEPP, 09/23/2010

Jinlong Zhang

b-tagging at 3×10³⁴

- Using signed impact-parameter significance likelihood tagger
- To test more sophisticated b-taggers to have a larger light-quark rejection

Δ

τ -tagging at 3×10³⁴

- Requiring 1 (2 or 3) tracks in the signal cone for 1 (3) prong τ 's and no tracks with P_{τ} >1.5 GeV/c in the isolation cone
- With ~10⁻³ jet fake probability

Lepton (muon) Isolation at 3×10³⁴

- Calorimeter isolation usually used to suppress QCD background but will deteriorate due to energy from 75 pileups at 3×10³⁴
- Track isolation will still work due to using only tracks pointing within a few mm of the muon at the beamline