

A Preamp-**Shaper-Discriminator Chip** for the ATLAS MDT Upgrade in a 130nm CMOS technology

Current Muon Drift Tubes (MDT) Electronics in ATLAS

• The ATLAS MDT system consists of about 350,000

ASD Chip Upgrade Motivation

• Readout system BW designed for 400kHz/tube, which is insufficient in forward region at high sLHC background rates. Smaller tubes and new corresponding front-end electronics are required.

- Need to integrate more channels on single ASD chip (> 8)
- Insufficient # of existing ASD chips available for testing, production
- Re-spin of old chip (in HP 0.5um) not feasible
- Integration into new L1 trigger scheme (muon track trigger)
- Voltage Regulators on-chip, better PSRR. Lower supply voltage?
- Need to reduce Mezzanine board size due to smaller 15mm tube size
- Fix pair-mode problem (flip flop meta-stability)
- Max drift time of new 15mm tubes is 200ns; programmable deadtime

- •, Global' Threshold and Hysteresis supplied from DACs off-chip • Similar schematics to previous chip,
- so direct technology comparison possible • Output must be compatible to existing
- **TDC**
 - No JTAG, scan chain implemented
 - 44-pin Kyocera ceramic QFP
- 2.1mm x 2.1mm total size
- ESD devices used on input, output

Package Pin #	Chip Pad #	Name	10	Function
18	1	VSS	10	Supply Low - GND

Max-Planck-Institut für Physik

(Werner-Heisenberg-Institut)

Layout Issues

• Seperate substrate / Gnd pins, better for noise • Power wiring done on AL - MA/E1 layers (7mohm) • Matching / Symmetry of Analog Differential circuits important • Numerous guard rings to reduce substrate noise and coupling • Symmetric pad layout; Supply pads placed strategically on chip edges • Double-diode ESD protection used on channel inputs and outputs • MIM caps and opppcres resistors used for shapers • Dummy NMOS, PMOS, and resistors used in design for matching. • Common centroid layout used where possible

Technology Overview

- IBM 130nm technology is a proven, rad tolerant, well-established and supported technology used in many LHC chip designs already at CERN
- Pure CMOS 8RF-DM technology (no bipolar)
- Thick-oxide 3.3V NMOS/PMOS for entire design. No thin oxide.
- Submitted design on MPW through CERN/MOSIS in 05/2009
- Rad-hard technology (proton, gamma tested; neutron not tested)
- Good Design kit, detailed models and tech documentation (Mixed-signal design possible with Europractice tools available)
- MIM-cap and MOS caps available
- 4 MPW runs per year possible with MOSIS. (4 planned in 2011)

								8RF-LM	8RF-DM	8WL	8HP	9SF	
							Process	130nm	130nm	130nm SiGe	130nm SiGe	90nm	
	1 T	Î	1 T	1 T	1 T	Î Î	Vdd (V)	1.2/1.5	1.2/1.5	1.2	1.2	1.0/1.2	
90 nm	9SF	9LP	9RF				Pad cell (V)	2.5/3.3	2.5/3.3	2.5/3.3	2.5/3.3	2.5	
							Level of Metals	6-8	6-8	6-8	6-8	4-10	
130 nm —	8SFG		8RF	8HP, 8WL			Metalization	Cu	Cu + Al	Cu + Al	Cu + Al	Cu	
							Analog Thick Metal	No	Yes	Yes	Yes	No	
180 nm —	7SF		7RF	7HP, 7WL	7HV	7RF SOI	Density (Kgates/mm2)	200	200	200	200	400	
				SHP	MEMs		Power (µw/MHz/gate)	0.009	0.009	0.009	0.009	0.006	
250 nm	6SF		6RF	6DM, 6WL			Ring Osc. Delays (ps)	27	27	27	27	21	
				51105			Bipolar beta	-	-	230	600	-	

Chip Requirements				
Input Impedance	120Ω			
Noise	ENC=6000e- rms (or 4 pe-)			
Shaping	Bipolar			
Shaper Peaking Time	15ns			
Linear Range	1.5V or 500 pe-			
Nominal threshold setting	60mV or 20 pe- (6σnoise)			
Supply Voltage	3.3V			
Power dissipation	< 33mW per channel			
Output to TDC	LVDS			
Gain Uniformity	< 2%			
# of Channels	4 (>8 on following chips)			
Channel Crosstalk	< 1.5%			
Preamp Charge Gain	1mV/fC			
Signal Path	differential			
Chip Mode	TOT only (no digital)			

