

Project X in a Nutshell

Recycler

Main Injector 120 GeV Neutrinos

2 MW

- H⁻ source & 3 GeV / 3 MW CW SCRF linac
 - 1 mA average, 10 mA bunch current
 - (sub) ILC frequencies: [162.5], 325, 650, 1300 MHz
 - broadband MEBT beam chopper (preferred) or resonant chopping schema

3-8 GeV acceleration options:

Pulsed SCRF 1.3 GHz linac , with short (<5 msec) or very long pulse (20-30 msec) Kaons

- Rapid cycling synchrotron

8-120 GeV acceleration in existing Main Injector (2 MW beam power)

Project X

Beam Instrumentation R&D

Standard Beam Diagnostics

- Toroids
- BLMs
- BPMs (cold and warm), including beam phase and TOF
- Wirescanners and multiwires (invasive, temporary)

Advanced Beam Instruments

- LPM, laser slit (emittance) monitor, longitudinal laser scanner
- E-beam scanner
- Beam halo diagnostics (vibrating wire, time resolved SEM)
- Invasive long. bunch diagnostics (Feschenko, fast Faraday cup)

Related Issues

- SCRF segmentation (location of complex beam detectors)
- Beam detectors inside the cryostat, BPMs, what else?
- Minimum-invasive beam profile measurements ("pollution-free")
- Protons vs. H⁻ beams (photo detachment methods)

Beam diagnostics is close connected to beam optics / dynamics / simulations

Definition of requirements, e.g. resolution, precision, dynamic range, locations,...

Ionization Chamber BLM

BPM R&D (KEK Collaboration)

Multiwire/Foil SEM (UTA Collaboration)

FNAL type

- Wire: 25 μm Ti (before W/Au)
- Ceramic substrate, w beam gap,
 wires epoxied to pads.

University of Texas type

100x5 µm Ti strips

NuMI beam

- Energy: 120 GeV
- Intensity/pulse: 3x10¹³ protons ₅₀
- Beam time: 8.56 µsec / 2.2 sec
- Power/spill: 140 kJoule
- Σ total: > 3x10²⁰ protons

Extrapolation

- 5 μm Ti strip (1660 degC 10 %):
 - ~1.6x10¹⁴ protons (max)

LPM R&D (BNL & LBNL Collaborations)

Laser Profile Monitor details

Q-switch laser

Laser energy: 50 mJoule

Wavelength: 1064 nm

Pulse length: 9 nsec

 Fast rotating mirrors (±4º / 100 µsec)

e detector: scintillator & PMT

Electron Beam Scanner (SNS Collaboration)

- Look at the deflected projection of a tilted sheet of electrons due to the proton beam charge
 - Neglect magnetic field (small displacement of projection)
 - Assume path of electrons is straight (they are almost straight)
 - Assume net electron energy change is zero (if symmetric).

 $\rightarrow \frac{d\theta_0(x)}{dx} = \int_L \frac{e}{mv^2} \frac{\delta(x,y)}{\varepsilon_0} dy$ or, take

or, take the derivative to get the profile

HINS Beam Studies

- HINS: High Intensity Neutrino Source
 - Initial Setup with p-source & RFQ
 - Temporary diagnostics beam-line
 - Beam dynamics & instrumentation playground

Project X HINS Beam Studies (cont.)

HINS Diagnostics R&D

T: Toroid

GV: Gate Value Q: Quadrupole

LW: Laser Wire

SEM: Secondary Emission Monitor

BPM: Beam Position Monitor

WS: Wire Scanner

S: Horz and Vert Slits

BSM: Bunch Shape Monitor (Longitudinal)

FFC: Fast Faraday Cup

HM: Halo Monitor

FD: Faraday Cup/Dump SM: Spectrometer Magnet Advanced HINS Diagnostics Line V 1.0 May 19, 2010

📥 H⁻ Beam

→ H° Beam or H⁻Beam

Project X Miscellaneous Diagnostics

- Other beam diagnostics R&D include
 - Monitoring of HOM coupler signals as BPM, also bunch-by-bunch. Read-out electronics and algorithms in collaboration with DESY.
 - Electron cloud beam studies applying the RF transmission method. Collaboration with LBNL.
 - Electron beam diagnostics for the NML test facility, e.g. screen monitors (OTR, YaG), EOS, interferometer techniques, fiber laser TOF, etc.
- Various (non-beam) instrumentation needs are supported, e.g.
 - Faraday cups for high power cryomodule tests
 - Wire position monitor (WPM) system inside the cryomodule
 - Machine protection system electronics
 - Klystron protection interlock system, also in test stands
 - 2nd sound & temperature monitoring

Summary & Remarks

- Beam instrumentation & diagnostics R&D needs beams(!),
 i.e. beam test facilities (HINS, NML).
 - The beam is the ultimate test to verify guide and acceleration fields.
 - Beam dynamic issues are expected in the low energy, space charge driven part of the hadron linac.
- SCRF based linacs may have issues operating invasive diagnostics, e.g. wires, slits, and other physical targets.
 - H⁻ beams offer the use of photo detachment techniques,
 e.g. laser wire profile monitor, longitudinal LW, laser slit
 - Invasive beam diagnostics can be installed temporary at the end of the linac, or in long warm sections (segmentation).
- Fermilab invites ESS & SPL for fruitful collaborations!
 - Use upcoming events to strengthen the discussions, e.g.
 HB2010 ICFA workshop in Switzerland end of September.