

In2p3

CNRS' cryomodule Activities

In2p3

SUMMARY

- I. GOALS AND MOTIVATIONS
- II. DESCRIPTION OF THE CRYOMODULE PROTOTYPE
- III. PLANNING
- IV. CURRENT STATUS
- V. CONCEPTUAL DESIGN
 - V.1. Support and guiding system
 - V.2. Cryostating

I. GOALS & MOTIVATIONS

Goals:

Including evolutions and news since June 2010:

- Design and procurement of a short cryomodule prototype to test a string of cavities for the HP SPL
 - 8 cavities \Rightarrow 4 cavities
 - 1 doublet of quadrupoles SC ⇒ none
- Design of a system to support and align the cavities into the vessel
- Procurement of a technical cryogenic module (cold box)
- Design and procurement of the cryostat assembly tooling outside the clean room

→ Conception must be valid for a machine configuration

I. GOALS & MOTIVATIONS

Motivations:

- > Learn:
 - Critical assembly phases
- > Validate:
 - The design of the support and alignment system
 - The cooling principles
- Enable RF testing :
 - Low / High power

Functional specifications have to be defined by CERN (in collaboration with CNRS)

III. DESCRIPTION OF THE CRYO-MODULE PROTOTYPE

III. DESCRIPTION OF THE CRYO-MODULE PROTOTYPE

Overall dimensions:

III. PLANNING

Milestones and Deliverables							
Date	Description						
July 2010	Functional specification of short cryomodule by CERN, with input from CNRS/CEA.						
November 2010	Conceptual Design Review of short cryomodule						
July 2011	Detailed Design Review. Detailed CAD models and detailed design engineering studies by CNRS finished.						
September 2011	Review of tender files for procurement. Tender documents available.						
December 2011	Contract orders signed by CNRS.						
October 2012	Complete set of components, accompanied by relevant documentation, available for starting assembly of the short cryomodule.						

Project: SPL cryomodules 03Decembe Date: Tue 6/1/10	Task	Milestone	•	External Tasks	
	Spilt	 Summary		External Milestone	Φ.
	Progress	Project Summary		Deadline	₽

July 1st 2010 _______ 4th SPL meeting ______

CATS In2p3

IV. CURRENT STATUS

IV. CURRENT STATUS

The cryogenic layout (to be defined by CERN):

Hypotheses to be confirmed by CERN:

- > 3 circuits : cavities / shield / couplers
- Control valves: 1 on the biphasic return tube / 2 per cavity (cooling & filling in)
- 1 heater per cavity (to simulate the nominal thermal load), 1 heater on the helium tank
- Possibility to change the inclination of the cryo-module (0-4%):
 - → Flexible interconnections with test bench
 - → Internal cryofluid distribution (biphasic LHe buffer)
- → The technical cryogenic module may contain all cryogenic valves

July 1st 2010 _______ 4th SPL meeting ______

IV. CURRENT STATUS

Short term actions:

- Functional specifications to be defined by CERN in collaboration with CNRS (July 2010)
- Conceptual design (November 2010)
 - Support and guiding system
 - Cryostating procedure and assembly tooling
 - Technical cryogenic module

V.1. Support and guiding system

> Principle: the main support point is the coupler (double walled tube)

Tolerance requirements :

	racy of the string / beam axis	Positioning stability / vacuum vessel fiducials		
Transversal	Longitudinal	Transversal		
± 0.5 mm	± 2 mm	± 0.3 mm		

V.1. Support and guiding system

Simulation of the deflection under 1g:

 \Rightarrow Need of a second guiding point allowing longitudinal contraction movements :

V.1. Support and guiding system

- Possible guiding systems :
 - Cavity-Tank / Vacuum vessel :
 - → solution not selected (CERN)

- Cavity-Tank / Cavity-Tank :
- chosen solution

- He tank / He tankRem. : Current brackets of LHe tank not suitable

- Cavity flange / He tank
- Tuner / cavity flange

For the last cavity: provide a specific guiding system

V.2. Cryostating

The cryostat tooling must allow:

- The installation of :
 - the string of cavities previously aligned,
 - the thermal shield,
 - the cryogenic piping,
 - the instrumentation.
- The disassembly of the cryo-module for the maintenance

Keep in mind there are a lot of assembly/disassembly cycles (TESTING cryostat)

In2p3

V. CONCEPTUAL DESIGN

V.2. Cryostating

Two possible methods:

Longitudinal cryostating :

The string of cavities is introduced into the vessel by a rail system

- String is placed on a tool

or

- String is hanging from a tool

Radial cryostating :

A big opening in the vacuum vessel is required:

- Allowing the insertion of the string of cavities
- Making easy the accessibility for the maintenance

V.2. Cryostating

Criteria to take into account:

- > Accessibility:
 - Tuners
 - Couplers
 - Cryogenic distribution
 - Instrumentation
- Reliability:
 - Cryostat vacuum and beam vacuum
 - Keeping the alignment of cavities
- Interfaces (time of interfacing) :
 - Cold box and cryogenic lines
 - Vacuum pumping connections
 - Instrumentation connections
 - ➤ Size of the cryostat

THANK YOU!