

Thermo-mechanical aspects of SPL b=1 cavity helium vessel and cryomodule interface

O. Capatina, P. Coelho, E. Montesinos,
V. Parma, T. Renaglia, W. Weingarten (CERN)
+ discussions and contributions from CEA and
CNRS colleagues

Introduction

 SPL beta = 1 cavity + helium tank + tuner + main coupler + bellow to next cavity

Overview

- Interface / cryomodule vacuum vessel (main coupler "double wall")
- Interface / cryomodule cryogenic lines
- Conclusions

- Helium tank for short cryo-module cavities (first set)
 - The most recent design proposed by CEA meeting foreseen today for discussion on this subject

- Helium tank for short cryo-module cavities (first set)
 - The most recent design proposed by CEA meeting foreseen today for discussion on this subject

- Helium tank for short cryo-module cavities (first set)
 - Tank in Titanium for thermal contraction compatibility with respect to Niobium
 - Transition between Nb and Ti via NbTi to be EB welded on both sides
 - Flanges for external interfaces: HOM coupler, main coupler, inter-cavities, cryogenic lines in NbTi; alternative transition to cryogenic lines – bimetallic
- At least one stainless steel helium tank will be designed and manufactured in the frame of the 2nd set of cavities (2013) for the long cryo-module

 The stiffness of the helium tank has a direct impact on the Lorentz detuning (defines the boundary conditions of the cavity)

Helium tank stiffness calculated by CEA

 Interface between the helium tank and the cryomodule vacuum vessel

Heater

Parameters

- 1000 kW pulsed (100 kW average), 704.4 MHz, 50 Ω
- H=300 mm; D=100 mm; eint=1.5 mm; eext=2 mm
- Copper on stainless steel; Copper RRR
 = 30 (Sergio Calatroni)
- Cooling gas at 4.5 K input
- Lower part at 2K and upper part at 300K
- Heater at upper part to insure 30 °C of flange temperature

- Model description (validated / the LHC main coupler)
 - Copper on Stainless steel wall
 - Semi-analitical model taking into account
 - Conduction the tube

$$\begin{array}{ll} \textbf{Conduction} \\ through \\ the \ tube \\ \end{array} Q_{cond} \! \left(T_a, T_b, i \right) \coloneqq \int_{T_c}^{T_a} \frac{\lambda_{ss}(T) \cdot S_{cond_tube_coupleur}}{l_i} \, dT \\ \end{array}$$

- $\textbf{Convection} \quad \text{Qcv}\big(T_{\text{wall}}, T_{\text{gas}}, h_{\text{c}}, S_{\text{convection}}\big) \coloneqq h_{\text{c}}\big(T_{\text{gas}}\big) \cdot S_{\text{convection}} \cdot \big(T_{\text{wall}} T_{\text{gas}}\big)$
- Radiation between warm and cold parts

$$Q_{rad_antenne_wall} \coloneqq A_{wall} \cdot \epsilon_{antenne_wall} \left(T_{wall_spl} \right) \cdot F_{wall_antenne} \cdot \sigma_z \cdot \left(T_{antenne}^{4} - T_{wall_spl}^{4} \right)$$

Power dissipation (average) in the wall when coupler on

$$P_{diss_ext} := \int_{0}^{h_{tube_coupleur}} \frac{\left(I_{peak_wall}(x)\right)^{2}}{2} \cdot R_{ext_elect} \left(Temp_{tube_coupleur}(x)\right) \, dx$$

$$I_{\text{peak_wall}}(x) := I_0 \cdot 2 \cdot sin \left(\frac{\omega_0}{c} \cdot x\right) \qquad I_0 := \sqrt{2 \cdot \frac{p_f}{Z_0}}$$

$$R_{\text{ext_elect}}(T) := \frac{\rho_{\text{CU_RRR30}}(T)}{\delta \left(\rho_{\text{CU_RRR30}}(T), \omega_0\right) \cdot \pi \cdot d_{\text{tube_coupleur_int}}}$$

Why cooling the wall?

[K]

 No cooling temperature profile
 => Gives 21W to 2K

 Cooling with 42 mgram/sec temperature profile

=> Gives 0.1W to 2K

- Why a heater at the top flange?
 - The heater insures 30 °C of flange temperature
 - If no heater, in order to have the same temperature at the flange when no power on
 - for the same thickness => height of more than 1m

OC. 01/July/201

"Double wall" tube of main coupler

Some thermal results

Massflow mgram/sec	21		23		28		35		42	
Power	ON	OFF	ON	OFF	ON	OFF	ON	OFF	ON	OFF
Temp. gas out	286 K	277 K	283 K	273 K	271 K	242 K	255 K	205 K	232 K	180 K
Q thermal load to 2K	2.4 W	0.1 W	1.7 W	0.1 W	0.4 W	0.1 W	0.1 W	0.1 W	0.1 W	0.1 W
Q heater	19 W	32 W	21 W	34 W	29 W	38 W	39 W	41 W	46 W	44 W
Δ L	0.1 mm (0.63-0.53)mm				0.05 mm (0.66-0.61)		~ 0 mm (0.67-0.67)			

- Outlet tube for cooling gas inside the cryomodule
- Cryo people wish: remote controlled valve for massflow adjustment

12

- Mechanical considerations
 - Foreseen as supporting system for the cavity inside the cryomodule
 - Worst case: cavity supported in cantilever by the double wall => maximum stress in the double wall below the maximum allowable stress

- Helium tank / cryogenic lines
 - Operation at 2K with saturated superfluid helium
 - 2 connections to cryogenic lines
 - For initial fill-in dimensioned for optimization initial fill time + instrumentation cables if any
 - For continuous cooling detailed hereafter

Some theory concerning HeII

Hell pressurized better stabilizer than Hell saturated

Stabilization margin for saturated HeII due to hydrostatic

pressure

 For example, in saturated HeII, for a channel of L=10 cm height, Δp = 1.4 mbar, margin from 2K to ~2.025K

- Hell is an excellent thermal conductor; A typical value of "thermal conductivity" at 2K is 2kW/mK for a channel of cross section of 1 cm² and length 10cm (one order of magnitude higher than pure copper).
- However, this relationship is true only for small heat fluxes!!! Above a critical heat flux, the temperature increases drastically and eventually the superfluidity is lost.

- Gorter and Mellinck have shown the dependence of the heat flux density / externally applied temperature
- Claudet et al. gave experimental values of heat transfer by HeII

$$\frac{\dot{Q}}{S} = \left[\frac{X(T_f) - X(T_c)}{f'} \right]^{0.29}$$
 (en W/cm²)

T_e et T_c (K) températures aux bouts froid et chaud d'un canal de section s (cm²) et de longueur l' (cm).

In our case:

Tc = 2K

Tw = temp stability margin (precedent example 2.025K)

- Application to our helium tank <u>some preliminary estimations</u>
 - Heat dissipation mainly at the equator

- For the upper part Qc= [[X(2K)-X(2.025K)]/10]^{1/3.4}
 - Qc_up ≈ 1.5 W/cm^2
- For the lower part Qc= [[X(2K)-X(2.1K)]/73]^{1/3.4}
 - Qc_down ≈ 0.95 W/cm^2
- Left Qc_left ≈ 0.8 W/cm^2

- Application to our helium tank <u>some preliminary estimations</u>
 - Heat load per cavity, <u>average</u>: 16 W + static load from cryomodule + ? HOM discussed by Wolfgang
 - Cryo duty cycle: 8.2 % => peak heat load 195 W + ...
 idem
 - Dimensioning of the piping depending on the cavity test program:
 - To be able to extract 195 W continuously => cross section > 130 cm² + optimization of space between cavity and helium tank
 - To be able to extract 25 W (margin as Vittorio) continuously => cross section > 17 cm²
 - Rmq The total tank Hell temperature increase due to 195 W during 1.6 ms is only 10^-5 K!!

Conclusions

Conclusions

 Main coupler double wall optimized to withstand the induced mechanical loads and low thermal losses to the helium bath;
 More details at http://indico.cern.ch/materialDisplay.py?contribId=3&materialId=slides&confld=86123

- Interfaces of helium tank with the cryogenic lines to be dimensioned according to the maximum average heat load experienced by the cavity during its lifetime
- Details of the helium tank will be discussed in a dedicated meeting