Spare slides

Cavity geometry position of HOM ports

- For considerations of mechanical design and manufacturability, the HOM port on main power coupler will be symmetrical to the power coupler
- The HOM has to be vertical for possible future cooling considerations => the Power coupler will be downwards
- The other HOM port will be positioned at 60 deg / vertical
- The pick-up port downwards

 Φ = angle between orthogonal modes

 TM_{01}

mag. field

 Φ = undetermined

 TM_{31} $\Phi = 30^{\circ}$

Condition for identical E-field at HOM antenna for dipole and quadrupole mode: $\sin\Phi = \sin(2\Phi) \Rightarrow \Phi=60^{\circ}$

Cavity geometry shorter length of bellows

proposed new layout with inter-cavity bellows of **89.4 mm** length: should be possible from the mechanical point of view

Length of bellows 89.4 mm

Power coupler coaxial disk air cooled window

Design based on a coaxial disk ceramic window similar as the one in operation on the CERN SPS TWC 200MHz power load

Advantages

- Very simple and well mastered brazing of ceramic onto a titanium flange
- High power capability (500kw cw)
- Very easy to cool with air
- Waveguide as "plug and play" mounting, absolutely no stress to the antenna
- DC HV biasing very simple, with again a "plug and play" capacitor fitting, and again no stress to the ceramic due to finger contact
- Least expensive of the three couplers!

Minor drawback

Ceramic is part of the matching system, fixes the waveguide position

Power coupler cylindrical air cooled window

- Design based on the same cylindrical window as the LHC couplers:
 - Long and difficult process to achieve reliability of the window, the final design was obtained after more than six years of studies
 - As the design was complex, we keep it exactly as it is
 - Instead of changing the ceramic design we have adapted the line to the ceramic

Advantages

- High power capability window, LHC proven (575kW cw full reflection, could be more...)
- Simple to cool with air
- Absolutely free of mechanical stress on the antenna
- Same "plug and play" waveguide and DC capacitor as previous design, no stress to the ceramic
- Simplest version to assemble!

Drawbacks

- Ceramic is part of the matching system, fixes the waveguide position
- Possible multipacting due to the outer conical outer line

Power coupler tests cavity design / conclusion

- With 130 mm from beam axis to flange (left part of the drawing):
 - ▶ Flange to end of antenna = 70 mm
 - Test cavity flange will be easier to assemble
 - Flange out of test cavity body
 - Possible correction by slightly adjusting the position of the flange
- With only 117.2 mm from beam axis to flange (right part of the drawing):
 - Flange to end of antenna = 57.2 mm
 - Test cavity flange will have to be part of the cavity body
 - Much more difficult to build
 - Less (perhaps no) possible correction by slightly adjusting the position of the flange
- Conclusion:

Please increase the position of the flange to a minimum of 130 mm (140 mm would be perfect)

Higher Order Mode (HOM) issues conclusions from HOM workshop

- 1. **HOM spectrum:** clustering around only few frequency bands: TE_{111} , TM_{110} and TM_{011} .
- 2. Upper tolerable limit for Q_{ext} from the beam break up point of view: Q_{ext} of 10⁶ 10⁸ seems tolerable.
- 3. Worst case maximum tolerable RF power absorbed by the HOM coupler: cavity geometry must be chosen in such a way that machine lines must not coincide with frequencies of HOM with large R/Q.
- 4. "Most elegant solution": let pass the HOMs into the beam tubes to be damped there.
- 5. "Next but less elegant solution": tapered beam tube with antenna type dampers if needed (without notch filter).

Case I: BNL2 Vs. CEA

HOM issues coupled S-parameter calculation (CSC)

H.-W. Glock; : K. Rothemund; U. van Rienen. CSC – A System for Coupled S-Parameter Calculations, TESLA-Report 2001-25 Coax with antenna tip depth = 0:

- to avoid extreme Q-values
- scaling in second step using coupler section's

S-parameters

Magnetic shielding Why do we need a magnetic shielding?

- BCS surface resistance R_s^{BCS} of 704 MHz cavity @ 2 K: 3 n Ω
- BCS Cavity $Q_0 = 275/R_s = 9.10^{10}$
- Assumed residual resistance: 24 nQ
- Total surface resistance: 27 n Ω corresponds to $Q_0 = 1.10^{10}$
- The magnetically induced residual resistance should be small compared to 24 $n\Omega$, say 3 $n\Omega$, corresponding to $B_{ext} = 1 \mu T$

$$\frac{R_s^{BCS}}{\text{n}\Omega} = 10^5 \cdot \left(\frac{f}{\text{GHz}}\right)^2 \cdot \frac{\exp\left(-\frac{18}{T/\text{K}}\right)}{T/\text{K}}$$

$$R_{mag}[n\Omega] = 3H_{ext}[\mu T]\sqrt{f[GHz]}$$

for RRR=300

Tobias.Junginger@quasar-group.org

Source: Update of presentation

http://indico.cern.ch/conferenceOtherViews.py?view=standard&confld=63935

Magnetic shielding Design of magnetic shield

Tobias.Junginger@quasar-group.org

EP status at CERN layout of EP circuit

HOM issues

beam break up simulations under various conditions

- ±0.5 deg / ±0.5 %
- uniform distributed
- normalised to case without RF errors

HOM issues beam break up simulations under various conditions

pattern (m/N)	f_c [MHz]
5/8	44.025
50/80	4.4025
500/800	0.44025

frequency sweep:
one HOM with f_{HOM} at
chopping resonance
frequency

HOM issues

beam break up simulations under various conditions

Overall conclusion:

To be on the save side and keep all operation options open a $Q_{ex} = 10^5$ is recommended!

HOM issues

On longitudinal HOM excitation for pulsed beams

I = 40 mA; pulse length 1 ms, R/Q = 100 Ω ; Rep. rate 50 Hz; f_{HOM} = 2.1 GHz; Q_0 = 10¹⁰

Power built-up/decay during pulse of 1 ms

Maximum power vs. frequency showing principal Fourier components of beam

On longitudinal HOM excitation for pulsed beams power dumped by beam into the HOM load

