
CERN environment for low power RF tests of SC cavities

W. Weingarten/CERN

Plan of presentation

- Premises
- General purpose equipment
- RF scheme
- Diagnosis
- Example for analysis
- On the RF measurement

Premises 1/5

Premises 2/5 SM18

Courtesy Sergio Calatroni CERN Orsay, 15.5.2006

Visible are only the concrete 'hats' for radiation protection. These can be rolled away on rails, uncovering below a test cryostat sunk into the ground; two with sufficient depth to contain a LEP 352 MHz cavity of 2.4 m length and the (heat) radiation shields above it, and one of lesser depth used for single cell cavity tests. The 300 W solid-state RF power amplifiers with their circulator and load are housed behind the concrete wall (for low power cavity/module tests)

Premises 3/5 SM18

Four cryostats for vertical low power RF tests

Control rack for vertical low power RF tests

Premises 4/5 SM18

Functionality of bunkers (vertical and horizontal)

Vertical cryostat V3: dedicated to SPL study (704 MHz)				
Testing sample cavities				
Test of individual cavities for SPL study				
Extensive tests of individual cavities for SPL project, if approved				
Vertical cryostat V4: dedicated to quadrupole resonator (400 MHz)				
Test of quadrupole resonator (R&D for SPL and HIE-ISOLDE cavities)				
Vertical cryostat V5: dedicated to HIE ISOLDE project (101 MHz)				
Test of quarter wave resonator prototypes				
Series tests of quarter wave resonators				
Vertical cryostat V6: dedicated to LHC cavities (400 MHz)/SOLEIL				
Soleil cavity				
RF tests of LHC spare cavities				
Bunker 1: SOLEIL/LINAC4/SPL study (352/704 MHz)				
SOLEIL cryomodule test				
SPL Cryomodule Test in horizontal cryostat in pulsed mode (1 MW per cavity)				
Bunker 2: LHC cryomodules (400 MHz) & HIE-ISOLDE (101 MHz)				
Series tests of quarter wave resonator cryomodules				
RF tests of LHC spare cryomodules				

In red: under construction

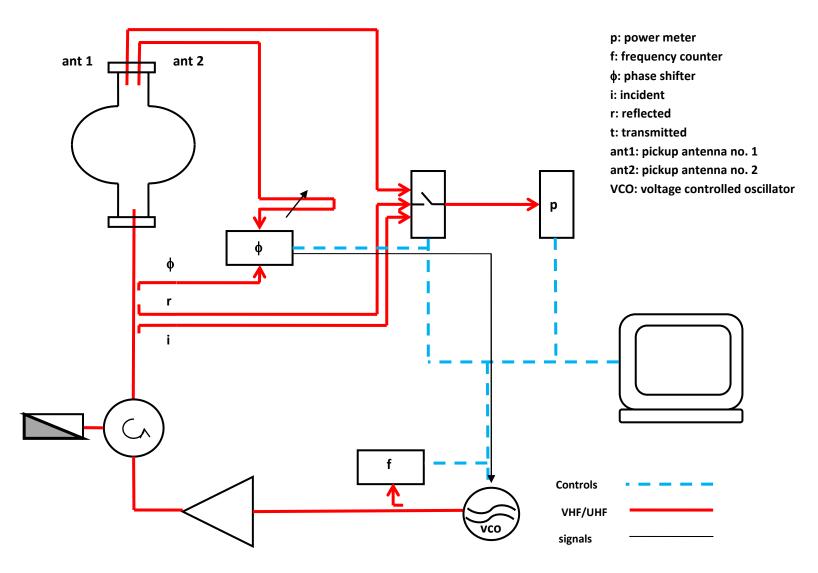
Premises 5/5 SM18

General parameters for vertical cryostats and bunkers

General parameter	V3	V4	V5	V6	B1	B2
RF frequency [MHz]	704	400 -	100	400	352 –	101 - 400
		1200			704	
Typical temperature	1.8 –	1.8 –	4.5	4.5	1.8 - 4.5	4.5
range [K]	4.5	4.5				
Nominal installed RF	power					
power		600	200	300 W –	300 W – 300	
(depending on whether	300 W	400 W	W	300 W	1 MW (pulsed)	kW
power coupler is						
mounted or not)						

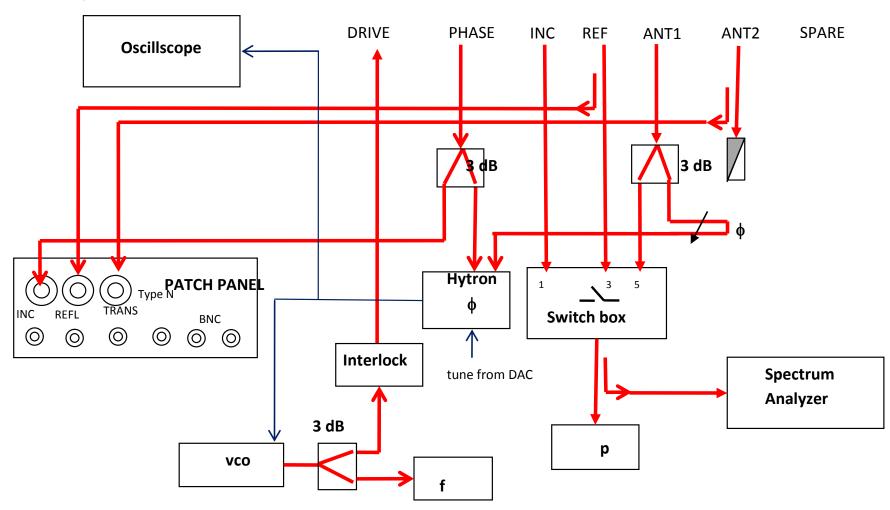
In red: under construction

General purpose equipment

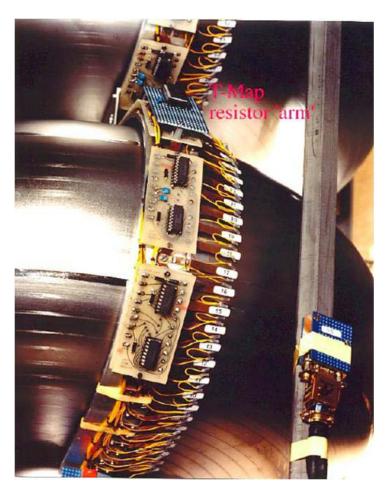

Rack Control room (distant to cavity)

Equipment item
Signal generator (VCO)
Cryostat heater control
X-radiation display
RF-switch box
Phase detector box (f)
Interlock equipment
Trombone phase shifter
Frequency counter (f)
Pulse generator/function generator
Oscilloscope
Spectrum analyzer
Power meter (p)
lHe level indication
(2 independent)
Vacuum indication cavity
Pressure indication cryostat

Control rack close to cavity


Equipment item				
RF power amplifier				
Active magnetic field compensation				
power supplies				
Rotary pump for lowering the				
temperature of IHe				
Water heater unit				
Heater cabinet				
Directional coupler (4 port)				
Directional coupler (3 port)				
Circulator				
RF load				

RF scheme 1/2


RF scheme 2/2

RF layout Rack Control Room

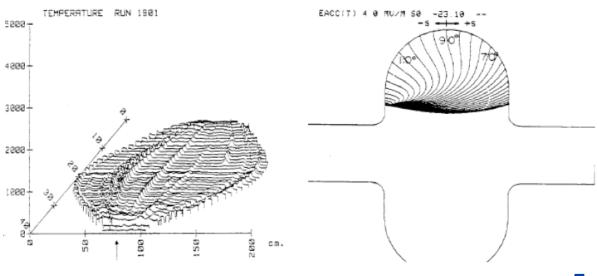
Diagnosis 1/2

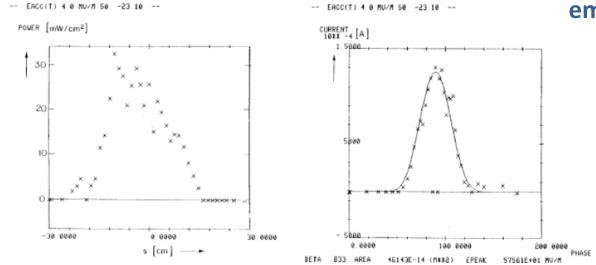
T-mapping¹ at CERN 1980-90

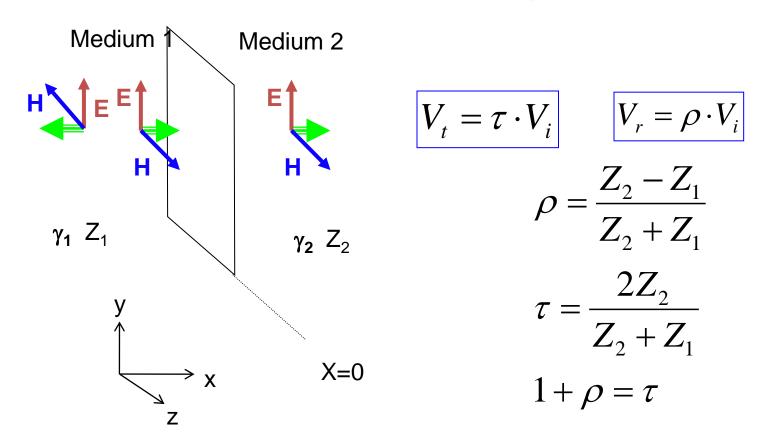
¹ map of the temperature distribution on the cavity surface under RF power

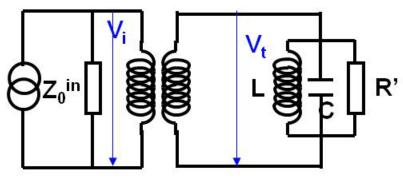
1-cell and 4-cell rotating resistors with/without multiplexing

Diagnosis 2/2



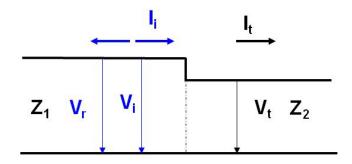

T-mapping at CERN (LHC cavities)


Example for analysis


On the RF measurement 1/4 Transmission line theory

Source: JUAS lectures at Archamps (Haute Savoie)

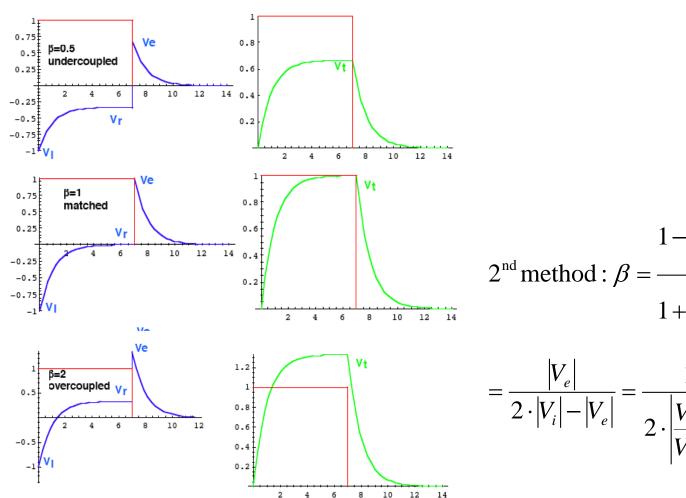
On the RF measurement 2/4 Response of a cavity to RF


The reflexion factor ρ depends on position, the coupling factor β does not: $\beta = \mathbb{Z}_2/\mathbb{Z}_1$

$$E_{acc} = \frac{V_t}{L} = \sqrt{\frac{8\beta'}{(1+\beta')^2} \cdot (R/Q) \cdot Q_0' \cdot P_i} / L$$

$$Q_0' = (1 + \beta') \cdot Q_L$$

$$\frac{1}{Q_0} = \frac{1}{Q_0'} - \frac{1}{Q_{ext}^{out}}$$


L is the cavity length; the prime (') represents intrinsic cavity losses plus the losses from the "output" or pick-up antenna.

$$Q_{ext}^{out} = \frac{\omega U}{P_{out}} = \frac{V_t^2}{2 \cdot (R/Q) \cdot P_{out}}$$

Measured quantities are the coupling factor β , the decay time τ , the incident RF power P_i and the transmitted RF power P_{out} .

<u>Derived quantities</u> are the accelerating gradient E_{acc} , the unloaded Q-value Q_0 (or the surface resistance $R_s = G/Q_0$, G is the geometry factor)

On the RF measurement 3/4 **Transient response**

$$2^{\text{nd}} \text{ method} : \beta = \frac{1 - \left| \frac{V_r}{V_i} \right|}{1 + \left| \frac{V_r}{V_i} \right|} = \frac{1 - \left| \frac{V_i - V_e}{V_i} \right|}{1 + \left| \frac{V_i - V_e}{V_i} \right|} = \frac{\left| \frac{V_e}{V_i} \right|}{1 + \left| \frac{V_i - V_e}{V_i} \right|}$$

On the RF measurement 4/4 Automatic measurement

- A transient response is not well suited for an automatic measurement
- The measurement of the decay constant τ in particular is difficult \rightarrow
- Instead of measuring P_i , P_{out} , τ and β , we apply a 2-step procedure:
 - Calibration:
 - We determine the cavity voltage V_t and the external Q-value $Q_{\rm ext}^{\rm out}$ by the transient method as described before
 - Measurement:
 - we determine the cavity voltage $V_{\rm t}$ (accelerating gradient, resp.) and the stored energy U from the transmitted power $P_{\rm out}$ via

$$Q_{ext}^{out} = \frac{\omega U}{P_{out}} = \frac{V_t^2}{2 \cdot (R/Q) \cdot P_{out}}$$

• We determine the unloaded Q-value Q_0 from the relation

$$\omega \cdot U = P_c \cdot Q_0 \qquad P_c = P_i - P_r - P_{out}$$

Measured quantities are P_{out} , P_{i} , P_{r} , all conveniently measured in CW by a high precision power meter.

• A measurement is rejected if the fundamental relation $1 + \rho = \tau$ is violated.