ESS Injector: some simulations

4th SPL Collaboration Meeting jointly with ESS from 30 June 2010 to 02 July 2010 (Europe/Stockholm) Grand Hotel

ESS - Bilbao

<u>I. Bustinduy,</u> D. Fernandez, D. de Cos, L. Usategui, P. Echebarria, A. Vizcaino, J. Muñoz, D. Cortazar, L. Mugira, S.Djekic, J. Feucthwanger, J. Fernandez, N. Garmendia, H. Hassanzadega, M. Eguiraun, I. Arredondo, J. Jugo, G. Harper, et al.

H⁻ Source

Optimum Quad Effect

Control System: Overview

Control System: Overview RT Controller

Platform Rack

High Voltage Platform

Control Rack

Ground Monitor

H⁺ Source

CPI S-Band CKPA2.73GHz klystron2.45HHz Magnetron is on its way.

Plasma Chamber

 $l = \frac{\pi}{\sqrt{\left(\frac{2\pi f}{c}\right)^2 - \left(\frac{3.682}{d}\right)^2}}$

TE₁₁₁ resonance condition at 2.7GHz Diameter of 80mm and a length of 95.4mm

BN disks To enhance the production of electrons

Both calculations are represented at a different magnetomotive force but at ECR field at 150 mm.

Plasma electrode in

non maa	znati <i>i</i>
OD including ground	
insulation (GI)	2698m
ID including GI	1 3 8 m
Thickness including GI	2 6 m
Ground insulation	
T h ic k n e s s	5.00E-04m

Extraction System -3.5 **0** [KV] 0 75 **Different Geometries** . (cm) Based on LEDA tetrode Pierce Non-Pierce **Spherical** 2.5 Superfish & Comsol 1.5

z (cm)

and Particle Tracking

GPT & IGUN

and Particle Tracking

AXCEL

Optimization

15

10

5

0

50

55

Optimization of the extraction of plasma electrode

Optimization of the extraction electrode aperture

Extraction aperture diameter (mm)

65

70

60

ē

0.25 ա

0.23

♦ 0.20

75

Extraction Aperture

Aperture Diameters	Case 1	Case 2	Case 3
Plasma electrode(mm)	7.5	7.5	7.5
Extraction electrode(mm)	5.0	7.5	5.0
Repeller electrode(mm)	5.0	7.5	7.5
Ground electrode(mm)	5.0	7.5	7.5

Table 1. Three analyzed cases for the tetrode system design and their electrode aperture diameters.

Beam physics parameters: rms emittances and percentage of lost particles

Figure 6. <u>Case1</u>: Percentage of lost macroparticles and rms emittance versus plasma electrode angle for a 19mm extraction gap.

Figure 7. <u>Case2</u>: Percentage of lost macroparticles and rms emittance versus extraction gap for a 48deg plasma electrode angle.

Figure 8. <u>Case3</u>: Percentage of lost macroparticles and rms emittance versus plasma electrode angle for a 19mm extraction gap.

Plasma Electrode

Figure 1. Beam transverse rms emittances and percentage of particles killed calculated at 600mm versus plasma electrode angle.

The optimum plasma electrode angle is 31deg!

Extraction Gap

Figure 9. Poisson electrostatic solution. Plasma aperture set at 75mm. Plasma angle of **31**°. Extraction gap is then varied.

Figure 2. Beam transverse rms emittances and percentage of particles killed calculated at 600mm versus extraction gap.

Extraction Gap (mm)

0.10

The optimum plasma accelerating gap is 14mm!

0 —

Extraction Aperture

Figure 3. Beam transverse rms emittances and percentage of particles killed versus extraction electrode aperture diameter calculated at 530mm.

The optimum extraction electrode aperture is 5.8mm diameter!

Extraction System

Model 1

Model 2

LEBT

Solenoid Design

Yoke (ARMCO)

2

278

0

31

Coil

9

3

~

N

/com, properties of ARMCO material 1 tb, bh, 1,, 13 2-5-2 tbpt,,0.0,0.0 tbpt,,159.2,0.8 tbpt,,294.4,1.2 **Different Radii** tbpt,,501.3,1.4 tbpt,,796,1.51 tbpt,,1592,1.6 configuration tbpt,,3183,1.67 tbpt,,5570,1.75 tbpt,,7957,1.8 tbpt,,15915,1.91 tbpt,,31830,2.05 tbpt,,55704,2.11 tbpt,,79577,2.15 Apply average current density of (0.0173mm² i) Ø366 0316 Ø100 152 Ø170.8 В Ø140.6

Diagnostics

lebt-75mA-0.4-0.3-0.3-0.3

lebt-75mA-0.4-0.3-0.4

 $α_{\chi}$: 3.0542 $β_{\chi}$: 1.5611

 $α_y$: 3.6033 $β_y$: 1.5984

nErms

α

LEBT a movie

RFQ

RFQ a first design

Figure 1: Evolution of RFQ parameters as a function of RF(cell number.

Figure 2: Beam conditions at the output of the RFQ. Top: Transverse phase-spaces. Bottom-left: Trasverse plane distribution. Bottom-right: Longitudinal phase-space.

- Codes used: **RFQSIM** (Alan Letchford) combined with **Trace2D** (LANL).
- RFQSIM is used to design the **vane profile** of the RFQ, as well as to perform **particle tracking** simulations.
- Trace2D is used to find the **matched beam** characteristics at the RFQ input

(typical values: $\alpha \sim I$, $\beta \sim 0.03$ mm/mrad)

Туре	4-Vane
RF Frequency	352 MHz
Species	Protons
Input Energy	75 keV
Output Energy	3 MeV
Max. Current	75 mA
Peak Surface Field	≤ 1.8 × Kilpatrick Limit
Pulse Length	Up to 2 ms
Repetition Rate	50 Hz
Duty Cycle	8%

фsh	$\mathbf{\Phi}_{gb}$	фf	a(mm)	m	W _{gb} (MeV)	I _{lim} (mA)	BF	Long (m)	Cells	Δε (%)	Transm. (%)
-85	-40	-30	2.3	1.67	0.50	205.2	1.80	4.11	339	3.5	97.7
-82	-39	-32	2.3	1.69	0.50	194.8	1.79	3.9	307	3.2	96.7
-82	-39	-30	2.3	1.69	0.50	194.8	1.79	3.87	306	3.5	96.7
-82	-39	-28	2.3	1.69	0.50	194.8	1.79	3.84	305	2.8	96.4
-80	-38	-30	2.2	1.75	0.50	182.6	1.83	3.55	270	5.2	94.4
-80	-40	-30	2.4	1.62	0.45	201.0	1.76	3.88	284	6.2	96.1
-82	-41	-30	2.4	1.60	0.45	211.2	1.77	4.08	309	4.7	96.2
-84	-38	-30	2.2	1.76	0.55	186.6	1.82	3.94	334	2.2	96.9
-83	-38	-30	2.3	1.72	0.55	189.0	1.77	4.08	346	4.0	97.0
-82	-38	-30	2.3	1.72	0.55	189.0	1.77	4.05	342	3.0	95.8

Bravery factor between **1.8-1.9**, Accelertaion capacity (>0.5), Focusing Eficiency B (> 5)

RF Design - COUPLER

RFQ a movie

