

RF Cavity Simulation for SPL

Simulink Model for HP-SPL Extension to LINAC4 at CERN from RF Point of View

Acknowledgement:

CEA team, in particular O. Piquet (simulink model) W. Hofle, J. Tuckmantel, D. Valuch, G. Kotzian

Presentation Overview

SPL Characteristics

Single Cavity Model and Simulation Results

Double Cavity Model and Simulation Results

• Error Analysis

PARAMETER

Resonant Frequency

Average Pulse Current

Repetition Rate

Accelerating Field

Accelerating Voltage Beam Synchronous Angle

Length of Beampulse

Geometry Factor (R/Q)

Power Delivered to Beam per Cavity

Cavity/Generator Coupling Loaded Quality Factor

SPL High Power Operation

 Possible operation using single, double and four cavities fed by a single power amplifier.

UNIT

MHz

Hz

mΑ

ΜV

ms

MW

Ohm (LINAC)

MV/m

High-Level Diagram of Single Cavity + Control System

RF Drive and Generator Model

- Generator current modeled as square pulse for the duration of injection + beam pulse time
- High bandwidth compared to feedback loop and cavity (1 MHz)

Cavity Model (cont)

Beam Loading

- Infinitely narrow bunches induce instant voltage drops in cavity
- Voltage drop is equal to generator induced voltage between bunches creating flattop operation
- Envelope of RF signal in I/Q

$$V_{cav_bunch} = \omega_{RF} \times \frac{R}{Q}(circuit) \times q_b$$

RF Feedback

- PID controller
- Limit bandwidth in feedback loop to 100 kHz
- (Klystron bandwidth is 1 MHz)

Graphical User Interface

Results

- Cavity Voltage Amplitude and Phase
- Forward and Reflected Power
- Additional Power for Feedback Transients and Control
- Effect of Lorentz Detuning on Feedback Power
- Effect of Source Current Fluctuations
- Mismatched Low-Power Case

Cavity Voltage and Phase in the Absence of Lorentz Detuning (Open Loop)

Reactive Beamloading Results in Vacc Deviation

Effect of Lorentz Detuning on Cavity Voltage and Phase (Lorentz Frequency Shift)

Effect of Lorentz Detuning on Cavity Voltage and Phase (Open Loop)

Lorentz effects oppose those of the synchronous angle

Linear phase shift for undriven cavity

Effect of Lorentz Detuning on Cavity Voltage and Phase (Open Loop Close-Up)

Cavity Voltage and Phase With Lorentz Detuning (Closed Loop Performance of Fast Feedback)

Cavity Voltage and Phase Close-up

to transients

the feedback

closed 10 us

after generator pulse and open

beam loading.

loading.

loop and beam

Forward and Reflected Power without Lorentz Detuning

Forward and Reflected Power and Feedback Power Consumption with Lorentz Force detuning

Effects of Source Beam Current Variation

SPL Low Power Operation (Power Analysis)

$$I_{b,DC} \cong 20 \text{ mA}$$

$$P_b = V_{acc} \times I_{b,DC} \times \cos(\phi_s) \cong 514 \text{ kW}$$

$$Q_{L, \text{fixed}} = \frac{V_{acc}}{\frac{R}{Q} \times I_{b,40 \text{ mA}} \times \cos(\phi_s)} \cong 1.3113 \times 10^6$$

$$I_g = \frac{V_{acc}}{R_L} + I_{b,DC} \cos(\phi_s) = 58 \text{ mA}$$

$$\alpha = \frac{I_g}{I_{b,DC} \cos(\phi_s)} = 3$$

$$\tau_{fill} = \frac{2Q_L}{\omega_{RF}} = 0.5926 \text{ ms}$$

$$t_{inj} = \tau_{fill} \ln(\alpha) = 0.6510 \text{ ms}$$

$$P_{fwd} = \frac{1}{4} R_L |I_g|^2 = 578 \text{ kW}$$

Effects of Source Beam Current Variation

High Level Diagram for Dual Cavity + Control System

22

Kalman Filtering

Proposed to obtain accurate output from noisy measurement (e.g cavity voltage)

• Uses model estimates + real measurements to find best output fit

 Useful for accurate feed-forward scheme for piezo-electric tuning of resonant cavities in the presence of Lorentz force

Kalman Filter Operation

- Model takes information from last estimated value of the signal of interest and its error covariance matrix
- Control signal conditions the next estimate
- Filter takes the a priori (before measurement) estimate from the model and then creates a best estimate with the measurement information

 $x_{k,measured}$

$$\begin{array}{l} \bullet \\ V_{RE} + \omega_{1/2} V_{RE} + \Delta \omega V_{IM} = R_L \omega_{1/2} I_{RE} \\ \bullet \\ V_{IM} + \omega_{1/2} V_{IM} - \Delta \omega V_{RE} = R_L \omega_{1/2} I_{IM} \end{array}$$

Kalman Filter Operation (Cont...)

- R and Q are the measurement and model noise covariances and can be viewed as tuning parameters of the filter
- The time step dt (sampling rate)
 is used to characterize the
 discrete filter from continuous
 linear differential equations

2-Cavity GUI

Results

- Cavity Phase Variation Without Feed-Forward
- Effects of Adaptive Feed-Forward
- Effects of Loaded Quality Factor Variation

Vcav Magnitude and Phase for Dual Cavity Case (K=-1 and -0.8)

Voltage magnitude and phase of vector average

Vcav Magnitude and Phase for Dual Cavity Case (Without Feed-Forward)

Vcav Magnitude and Phase for Dual Cavity Case (With Feed-Forward)

Cavity 1 (K=-1)

Cavity 2 (K=-0.8)

Loaded Quality Factor Fluctuation Effects on Cavity Voltage Magnitude

Error Analysis

- Vector average is maintained within specifications with RF feedback loop, but individual cavities deviate depending on their parameters.
- Characterize deviation of cavity voltage with variations in loaded quality factor and lorentz detuning coefficients
- Curves fitted for difference in cavity voltage magnitude and phase between 2 cavities controlled by a single RF feedback loop, centered at nominal accelerating voltage magnitude and phase.

Effects of Varying Loaded Quality Factor on Cavity Voltage Magnitude

p00=1.107e+006 p10=65.53 p01=-68.21 p20=-2.827e-005 p11=2.417e-006 p02=2.801e-005 p30=4.567e-012 p21=1.135e-012 p12=-2.098e-012 p03=-4.177e-012

$$\begin{split} V_{Diff} &= f\left(Q_{L1}, Q_{L2}\right) = f\left(x, y\right) = V_{c2} - V_{c1} \\ V_{c1} &= V_{acc} + \frac{V_{Diff}}{2} \\ V_{c2} &= V_{acc} - \frac{V_{Diff}}{2} \\ V_{Diff} &= V_{acc} - \frac{V_{Diff}}{2} \\ V_{Diff} &= V_{Diff} + V_{Diff} - V_{Di$$

Effects of Varying Lorentz Detuning Coefficient on Cavity Voltage Magnitude

p00=-1.774e-010 p10=-8.149e+013 p01=8.149e+013 p20=-5.016e+029 p11=-9.525e+013 p02=5.016e+029

$$\begin{aligned} V_{Diff} &= V_{c2} - V_{c1} = f(K_1, K_2) = f(x, y) \\ V_{c1} &= V_{acc} + \frac{V_{Diff}}{2} \\ V_{c2} &= V_{acc} - \frac{V_{Diff}}{2} \\ V_{Diff}(x, y) &= p \quad 00 + p \quad 10 \quad x + p \quad 01 \quad y + p \quad 20 \quad x^2 + p \quad 11 \quad xy + p \quad 02 \quad y^2 \end{aligned}$$

Effects of Varying Lorentz Detuning Coefficient on Cavity Voltage Phase

p00=-9.52e-018 p10=2.291e+011 p01=-2.291e+011

$$\begin{split} V_{Diff} &= V_{c2} - V_{c1} = f(K_1, K_2) = f(x, y) \\ V_{c1} &= V_{acc} + \frac{V_{Diff}}{2} \\ V_{c2} &= V_{acc} - \frac{V_{Diff}}{2} \\ V_{Diff}(x, y) &= p \cdot 00 + p \cdot 10 \cdot x + p \cdot 01 \cdot y + p \cdot 20 \cdot x^2 + p \cdot 11 \cdot xy + p \cdot 02 \cdot y^2 \end{split}$$

In Summary...

- In order to cater for the needs of project specifications in constant need of revision, a high flexibility simulation model developed
- Flexible graphical user interface allows for efficient handling of simulation data
- 1, 2 and 4 cavities can be observed from RF point of view under a wide set of circumstances
- Can estimate practical issues that can arise during development of a real LLRF system in terms of power, stability of accelerating field and technology necessary for operation

Next Step

- Include and quantify effect from finite transit time for low beta cavities.
- Characterize power amplifier nonlinearities
- Characterize the behavior of the piezo-electronic tuner within the control loop.