

Status of the SPL study

R. Garoby – 30/06/2010

- 1. Past context and recent changes
- 2. New plans for the SPL R & D
- 3. Progress since Nov. 2009
- 4. Near future...

- 1. Past context and recent changes
 - 2. New plans for the SPL R & D
 - 3. Progress since Nov. 2009
 - 4. Near future...

R.G. 30/06/2010

History...

End 2006 and beginning of 2007: preparation of a roadmap and workplan towards the LHC luminosity upgrade ("White paper")

 Luminosity depends directly upon β* and beam brightness N/ε*

 Brightness is defined at low energy in the injectors

$$L \propto \frac{1}{\beta^*} \frac{N_b}{\varepsilon_{X,Y}} \cdot N_b \cdot k_b$$
 N_b : number of protons/bu nch

 $\varepsilon_{X,Y}$: normalized transvers e emittances

 $k_{\rm b}$: number of bunches per ring

$$\Delta Q_{SC} \propto \frac{N_b}{\varepsilon_{X,Y}} \cdot \frac{R}{\beta \gamma^2}$$
 N_b : number of protons/bu nch

 $\varepsilon_{X,Y}$: normalized transvers e emittances

 R : mean radius of the accelerato r

 $\beta \gamma$: classical relativist ic parameters

History (cont.)...

19/09/2008: LHC splice "incident" December 2007: CERN Council approval of "White paper", consisting in upgrading the high luminosity IRs ("IR upgrade phase 1") and the injectors ("Linac4" + study of LP-SPL & PS2)

January 2008: official start of the LP-SPL study

Oct.2008 – Oct.2009: LHC repair December 2008: 1st SPL collaboration meeting

May 2009: 2nd SPL collaboration meeting

 June 2009: increased LP-SPL budget in Medium Term Plan 2010-2014

CHAMONIX 2010 Workshop

Nov. 2009: 3rd SPL collaboration meeting

New CERN
Scientific Strategy

15 June 2010: Proposal for new Medium Term Plan 2011-2015 submitted to the CERN Council

R.G. 5 30/06/2010

Arguments for the new scientific strategy

Need for large resources

LHC:

- Delayed start-up
- Slower progress of performance than initially foreseen
- Need for more work & resources to reach nominal performance
- More worries on capability to operate beyond ultimate beam characterist

New injectors:

- Realistic planning: availability in 2020-2022
 - ⇒ need to invest for consolidating the existing accelerators
- Uncertain SPS potential

⇒ Interest for investigating the possibility to minimize cost by "simply" upgrading PSB and PS

1. Past context and recent changes

- 2. New plans for the SPL R & D
 - 3. Progress since Nov. 2009
 - 4. Near future...

R.G. 7 30/06/2010

New plans for the SPL R & D

Considering the present context (pending CERN Council decision for implementation) the CERN management has recommended:

- No construction of LP-SPL and PS2.
- Termination of studies to allow for the LP-SPL and PS2 to remain as possible fall-back solutions.
- Continuation of <u>SPL R & D for high beam power</u> in view of potential use in a neutrino facility.
- Increase of the PSB to PS transfer energy.
- Consolidation and upgrade of PSB, PS and SPS.

Completion in ~2015

HP-SPL wrt LP-SPL

- Upgrade of infrastructure (cooling water, electricity, cryogenics etc.)
- Replacement of klystron power supplies,
- Addition of 5 high β cryomodules to accelerate up to 5 GeV (π production for ν Factory)?

Beam characteristics of the main options

Faster rep. rate

⇒ new power
supplies, more
cooling etc.

		•					
	Option 1	Option 2					
Energy (GeV)	2.5 or 5	2.5 and 5					
Beam power (MW)	2.25 MW (2.5 GeV)	5 MW (2.5 GeV)					
Deam power (MVV)	<u>or</u>	<u>and</u>					
	4.5 MW (5 GeV)	4 MW (5 GeV)					
Rep. frequency (Hz)	50	50					
Protons/pulse (x 10 ¹⁴)	1.1	2 (2.5 GeV) + 1 (5 GeV)					
Av. Pulse current (mA)	20	40					
Pulse duration (ms)	0.9	1 (2.5 GeV) + 0.4 (5 GeV)					

 $2 \times \text{beam current} \Rightarrow 2 \times \text{nb. of klystrons etc.}$

R & D for high power SPL

(in continuity with the work previously done for the LP-SPL)

Motivation

- Preserve potential for some alternative physics programmes (Neutrinos, RIB)
- Preserve possibility of new injectors at long term
- Update CERN competences in superconducting RF

Description

- Focused on high beam power
- R & D only (<u>no work on integration / civil engineering / environmental impact</u>)

Main objectives

- End 2010-2011: ~simultaneously with the PS2 CDR): LP-SPL CDR
- First half of 2013: high power test of 4 sc cavities in a short horizontal cryostat
- First half of 2015: high power test of 8 sc cavities in a prototype full size cryomodule
- Beyond 2015:
 - if a project proposal has to be prepared: integration, safety, civil engineering environmental impact study...
 - if R & D continues: Nb coating on Cu, β =0.65 cavities, rings for a neutrino facility, target and target area, other needs of a neutrino facility...

R & D subjects until 2015

(in continuity with the work previously done for the LP-SPL)

Partly addressed in sLHC-PP

R & D towards a high duty cycle H⁻ source (continued after end of SLHC-PP)

Treated in sLHC-PP

Study of the optimum high power RF architecture for a high power SPL

Partly addressed in "EuCARD"

Design, construction and test of superconducting RF cavities (704 MHz - 5 cells - β =1)

Partly supported by French "in-kind" contrib.

Development of high power RF coupler, HOM damper and adaptation of tuner

With ESS support

Upgrade of the SM18 test place [2 K cooling + pulsed RF source at 704 MHz (1 MW @ 50 Hz)]

- Pulsed high power RF tests of contiguous cavities in a common cryostat
- Design, construction and test a high power klystron modulator
- Design, construction and test of a prototype cryomodule equipped with 8 β=1 cavities

Planning for cavities and cryomodule

	2011			2012				2013				2014				2015				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
SM18 - 2K Cryogenics			V					X												
SM18 modulator			cryo.	F	rom			- 1								2 -			CERN	
SM18 - 704 MHz High Power RF					dustr ESS)	У		X											esign	
High Power RF couplers	4			>4								>8								
Superconducting cavities				>4								>8								
Assembled string of 4 cavities						X														
Horiz. test cryostat (4 cav.)						X														
Equipped horiz. test cryostat								X												
High power RF tests in test cryo.										X										
Assembled string of 8 cavities														X						
8 cavities cryomodule										<mark></mark> ∙phas				X						
Equipped cryomodule								d		h ESS upd						X				
High power RF tests in full CM																		X		

R.G. 12 30/06/2010

Working

Groups

Organization

Study leader: R. Garoby

Coordinator **External partners** RF hardware (low level & high Cockcroft Institute, ESS + (FNAL, SNS, E. Ciapala JLAB, ANL) power) Cavities (structures & auxiliary W. Weingarten CEA-Saclay, CNRS-Orsay, TRIUMF, Stony equipment) Brook + RHUL + (JLAB, SNS) Cryomodule (cryostat & cryogenics) CEA-Saclay, CNRS-Orsay, Stony Brook + V. Parma (FNAL) Beam dynamics (beam parameters) A. Lombardi CEA-Saclay, TRIUMF, Soltan Institute, ESS Architecture (layout & geometry, F. Gerigk extraction, transfer) Surface treatment and vacuum S. Calatroni Mechanical design and O. Capatina construction SPL Collaboration

- SPL documentation in EDMS [https://edms.cern.ch/nav/SLHC-000008]
- SPL meetings in Indico [http://indico.cern.ch/categoryDisplay.py?categId=1893]

R.G. 30/06/2010

Requested CERN resources

•	1										
		2010	2011	2012	2013	2014	2015	TOTAL 2010-2015	COMMENTS		
Management (travels and visitors)	FTE	1	1	1	1	1	1	6			
ivianagement (travers and visitors)		60	50	50	50	50	50	310			
Fallacca and shodants	FTE				0	0	0	0			
Fellows and students					120	120	120	360	3 years fellow		
	FTE	0.2	0.2	0.2	0.2	0.2	0.2	1.2	•		
Optics design and beam dynamics	kCHF	0	0	120	120	120	120	480	4 years fellow		
SLHC-PP [CNI in FP7]	FTE	2	0.8	0	0	0	0	2.8	. your control		
(H- source and RF field stabilization)	kCHF	600	180	0	0	0	0	780			
(11 Source and N. Field Stabilization)	FTE	0.7	0.9	1.9	2.5	2.8	2.8	11.6			
Cryomodule devt. (CERN)	kCHF	250	360	580	540	660	260		11 years fellow		
		0.75				000	200		11 years renow		
SC cavities technology	FTE		0.75	0	0			1.5			
	kCHF	200	50	0	0	0	0	250			
Radio protection study	FTE	0.2	0.2	0.2	0.2	0.2	0.2	1.2			
,	kCHF	60	60						1 year fellow		
Niobium & other raw materials procurement	FTE							0			
Thousan a care ran materials procarement	kCHF	280	280					560			
Upgrade of workshop equipment (HPWR stations)	FTE	0.5						0.5	Assumes 12 months of Technical Student or ESS engineer		
opgrade of workshop equipment (the wik stations)	kCHF	200						200			
High Dower DE couplers (2 types Q in total)	FTE	0.5	0.5	0.5	0.5			2			
High Power RF couplers (2 types , 8 in total)	kCHF	350	100	200	300			950			
Fabrication of cavities with HOM couplers + upgrade of	FTE	0.3	1.2	2.1	1.3	0.8	0.4	6.1			
EB welding	kCHF	350	890	340	200			1780	2.5 years fellow		
Processing & measurement of sc cavities / assembly,	FTE	0.8	1.2	1.2	1.2	1.2			Assumes availability of Doctoral student		
commissioning and tests of cavities	kCHF	20	30	50	80	60		240			
Upgrade of clean room equipment and auxiliary systems		2.5	2.5	2		2		11			
in SM18	kCHF	100	1050	580	50	30	0	1810			
111 21/170	FTE	0.1	0.2	0.1	30	30	- 0	0.4			
Upgrade of cryogenics in SM18		348	720						2		
	kCHF	348	/20	172				1240	2 years fellow		
Clean room assembly	FTE			1	1	1.5	0.5	4			
	kCHF		_	150	100	300	50	600			
High power amplifier and 704 MHz RF hardware	FTE	0.6	1.6	1.9	2.1	1.6	2.1	9.9			
procurement / commissioning and testing of cavities in	kCHF	100	720	1120	320	170	220		5 years fellow		
Modulator design and construction	FTE	0.3	3.4	6.3	4.8	1.3		16.1			
	kCHF	45	270	535	385	140		1375	4 years fellow		
OVER 411 TOTAL (OFFIN)	FTE	10.5	14.5	18.4	16.8	12.6	7.2	79.9			
OVERALL TOTAL (CERN)		2963	4760	3897	2265	1650	820	16355			
Additional work package for the continuation of the R & D for a high duty factor H- source											
H ion course protetype design/senstruction and test	FTE		1.2	2.4	2.4	2.4	2.4	11			
H- ion source prototype design/construction and test	kCHF		309	498	618	618	618	2660	8 years fellow		
TOTAL (05DN) 111 11 11 11 11 11	FTE	10.5	15.7	20.8	19.2	15.0	9.6	90.9			
TOTAL (CERN) with H- source devt	kCHF	2963	5069		2883	2268	1438	19015			

- 1. Past context and recent changes
- 2. New plans for the SPL R & D
- 3. Progress since Nov. 2009
 - 4. Near future...

Linac4 Civil Engineering

Linac4 planning

project duration: ~ 7 years

Activity since Nov. 2009

- + Active participation to the preparation of the new CERN MTP...
- ⇒ Redefinition of the workplan and French in-kind contribution
- + Work within WGS [e.g. video-conferences of WG2 (~1/month), technical discussions, contributions to conferences and workshops, visits, etc.]
- + Technical Workshops:
 - 21 January 2010: <u>RF needs for SPL sc cavities tests</u>
 - 16-17 March 2010: Review of SPL RF high power couplers
- + First public seminar:
 - 18 February 2010: http://indico.cern.ch/conferenceDisplay.py?confld=81116
- + Collaboration Meeting:
 - End July 2010: 4th SPL Collaboration Meeting
- + Coordination (~2 meetings/month)
- Freeze on preparation of collaboration documents, pending firm decision on CERN commitment to the SPL R & D...

- 1. Past context and recent changes
- 2. New plans for the SPL R & D
- 3. Progress since Nov. 2009

4. Near future...

Next 12 months

... provided that the HP-SPL R & D is supported at the expected level within the future MTP:

- Extension of the study to a full proton driver for a neutrino factory
- Optimization & cost estimate of full proton driver (contribution to the IDS-NF)

Next 12 months

... concerning the SPL itself (non-exhaustive list):

- Order of Niobium and construction of cavities in industry
- Start of upgrade of cryogenics and overall infrastructure in SM18
- Specification & order of klystron modulator from industry (ESS)
- Cryomodule specification meeting (Sept. 2010) + design review (Nov. 2010)
 + beginning of construction (IN2P3)
- Specification & construction of tuners and He tanks (CEA)
- 5th SPL Collaboration Meeting (Nov. 2010)
- LP-SPL CDR (jointly with PS2) (Beginning of 2011)
- Construction & test of High power RF couplers + Review (March 2011)
- Test of single cell sc cavity

THANK YOU FOR YOUR ATTENTION!