SPL ARCHITECTURE & PARAMETER SPACE

F Gerigk

OVERVIEW

- new mandate,
- conclusions from last meeting,
- parameter consolidation, definition of new "nominal" & "ultimate" scenarios for cryogenics,
- other progress,

NEW MANDATE FROM THE MANAGEMENT:

- write-up of LP-SPL study until end of 2011,
- · focus on a HP proton driver for neutrino physics (& possibly RIB),
- R&D on SC cavities for such a machine: construct a 4-cavity "short" cryo-module,
- suspend work on civil engineering and integration.

presently focus on parameters for a neutrino driver!

MILESTONE I: SEPARATE CRYO-MODULES

after cryo-segmentation workshop (9-10 Nov. 2009) and 3d the collaboration meeting (11-13 Nov. 2009)

- quick exchange of single modules (promise of faster commissioning),
- slightly higher initial investment but much reduced risk in case of a vacuum leak,
- possibility of warm quads: i) easier alignment of quads, ii) simpler cryo-module design, iii) more flexible operation, iv) avoids safety issues with cold quads, v) higher power consumption,
- no margin (in terms of tunnel length) to have more cavities in order reach 5 GeV in case of lower than expected cavity performance, but since it easier to take modules out for reprocessing we will be less punished by underconfirmed! performing cavities.
- use of FFDD lattice becomes mandatory.

MILESTONE II: KLYSTRONS ON THE SURFACE

- potential cost saving and simplification of civil engineering (safety aspects, space restrictions, installation..),
- simplifies transition from a low-power SPL to a high-power SPL, solves problem of having "compact" HP-SPL modulators, safety aspects easier,
- first calculations indicate LLRF feasibility, similar installations are at work at FNAL (with working LLRF feedback),
- need to address cooling of wave-guides for high-power operation,
- need to find suitable wave-guide geometry (space vs low loss & group delay),
- needs further work on integration and civil engineering.

MILESTONE III: RF SPLITTING

- LP-SPL: most likely for we split from one klystron (1.5 MW) to 2 cavities in the high-beta part, and use one source (type of source to be defined) per cavity in the low-beta part,
- HP-SPL: use the same klystron and go to I klystron per cavity in highbeta part, upgrade low-beta part,
- study option of splitting to 2 cavities in more depth! but abandon splitting to more than 2 cavities.
- work needed on wave-guide type/routing, etc.

PARAMETER CONSOLIDATION:

FOCUS ON ONE HIGH-POWER USER: NEUTRINOS

design version	2009	2010
kinetic energy	5 GeV	5 GeV
beam power (@ 4 GeV)	3-8 MW	4 MW
repetition rate	50 Hz	50 Hz
beam pulse length	0.4-1.2 ms	0.4 or 0.8 ms
average pulse current	20/40 mA	40 or 20 mA
chopping ratio	62%	62%
protons p. pulse	I-3×10 ¹⁴	1×10 ¹⁴
length (SC linac, nominal)	525 m	536 m ←

cryo-segmentation

2 OPTIONS TO GET TO 4 MW:

low-current (20 mA)

high-current (40 mA)

filling time (total) β=0.65	0.75 ms	0.37 ms
filling time (total) β =1	0.76 ms	0.38 ms
beam pulse length	0.8 ms	0.4 ms
RF pulse length (fill+flat top) β=0.65	1.55 ms	0.78 ms
RF pulse length (fill+flat top) β =1	1.56 ms	0.78 ms
beam duty cycle	4%	2%
RF duty cycle	7.8%	3.9%
cryo duty cycle	8.2%	4.1%

PROS & CONS FOR 20/40 MA

- 40 mA makes accumulation & compression easier,
- 40 mA requires twice the peak power from the klystrons (price difference probably within 20%),
- in both cases splitting the power to 2 cavities seems attractive but still needs to be verified experimentally, (peak power demands from klystrons seem feasible for both cases: ~3 MW/1.5 MW),
- at 20 mA lower peak field demand on modulator, coupler, but the same average power demand,
- 20 mA doubles the load on cryogenics.

CONSOLIDATION OF CAVITY PARAMETERS

design version	2010		
frequency	704.4 MHz		
design beta	0.65/1.0		
cells per cavity	5/5		
design gradient	19.3/25 MV/m		
(R/Q) (linac Ohm)	290/570		
Q_0	6/10 x 10 ⁹		

DEFINITION OF NOMINAL/ULTIMATE PARAMETERS FOR CRYOGENICS

"old" logic

• to go from the nominal to the "ultimate" load case Q0 was halved and the accelerating gradient increased by 10%.

"new" logic

• to go from the nominal to the "ultimate" load case Q0 is halved, the accelerating gradient is kept constant, but we use 20 instead of 40 mA (increased cryoduty cycle),

DEFINITION OF NOMINAL/ULTIMATE PARAMETERS FOR CRYOGENICS

	b=0.65	b=I
	nominal/ultimate	
cavity bath temperature	2K	2K
beam loss	IW	IW
static loss along modules at 2 K	?	?
static loss at 5-280 K	?	?
accelerating field	19.3 MV/m	25 MV/m
quality factor	6/3 x 10 ⁹	10/5 x 10 ⁹
cryo duty cycle	4.09%/8.17%	4.11%/8.22%
power coupler loss at 2 K	<0.2/<0.2 W	<0.2/<0.2 W
HOM loss in cavity at 2 K	<1/<3 W	<1/<3 W
HOM coupler loss at 2 K (per coupl.)	<0.2/<0.2 W	<0.2/<0.2 W
HOM & power coupler 5-280 K	0.05 g/s	0.05 g/s
dynamic heat load p. cavity	4.2/13.4 W	5.1/16.2 W

RF needs for SPL SC cavity tests

21 January 2010 CERN

Europe/Zurich timezone

Search

Overview

Timetable

Registration

Registration Form

List of registrants

since then requirements have been coordinated with Linac4/HIE-Isolde/LHC

Magnetic stripping studies for SPL

P. A. Posocco ¹, M. Eshraqi ^{1, 2}
¹ CERN, Geneva, Switzerland, ² European Spallation Source, Lund, Sweden

400 mm magnetic length seems save!

CHANGES TO MEETING SCHEDULE

- Thursday 9:30, Progress at TRIUMF is cancelled (subsequent talks & coffee break start 15 min earlier),
- Thursday 12:15 12:30: Pros and Cons of ESS cryo-module segmentation, A. Ponton,
- Friday 8:30 (15 min earlier!): Options for ESS linac lattice, M. Eshraqi,

please upload your talks or have your laptops ready!