Activities at Royal Holloway

1st July 2010

Steve Molloy, Royal Holloway, University of London

Main activities

- Simulations
 - ACE3P codes at NERSC
 - Sims of CEA cavities
 - Multi-cavity cryomodules
- Physical measurements
 - Bead-pull facility
- HOM-based diagnostics
 - Measurements at FLASH & ALICE

Heavy duty simulations

- A single cell has the usual mode spectrum
 - TE_{mnp}, TM_{mnp}
- Coupled cells (e.g. in a multi-cell cavity)
 - Modes split into passbands
 - Each oscillation characterised by phase advance per cell
- Multicavity installations (i.e. a cryomodule)
 - Modes below beam-pipe cutoff, so disregarded
 - But this neglects evanescent coupling!

Eigenmodes exist in all cavities

Intra-cavity coupling

- Each cavity mode will be found four times
 - One for each cavity
 - A single cavity will dominate each mode, however the evanescent field allows coupling.
 - Beam → Field coupling in one cavity will excite fields in all others.
 - Expect coupling to increase (non-trivially) with frequency
- Extract intra-cavity coupling from simulation
 - Ratio of field amplitude between each cavity and its neighbour

Coupling – 1st five passbands

Max edge length = 32.9 mm

~6 m long

~760k elements
Average volume = 4.5 x 10⁻⁷ m⁻³
Min edge length = 1.4 mm
Max edge length = 32.9 mm

~6 m long

~760k elements
Average volume = 4.5 x 10⁻⁷ m⁻³
Min edge length = 1.4 mm
Max edge length = 32.9 mm

Intra-cavity coupling

l<mark>olloway</mark> London

Cavity geometry 2/5 phase relation between string of several cavities (π - mode)

present layout with inter-cavity bellows of 100 mm length

 $2.05 \cdot \lambda/2$

proposed new layout with inter-cavity bellows of 89.4 mm length

RF power coupler phase = -180°

RF power coupler reference phase = 0°

RF power coupler phase = 180°

High Performance Computing

- Access to SLAC simulation codes
 - Limited by export restrictions
 - Highly indebted to Kwok Ko, et al. at SLAC
 - Highly parallelisable EM sim. codes.
- Franklin supercomputer at NERSC
 - 38000 compute cores
 - 11th fastest in the world!
 - I have 15% of SLAC's NERSC budget!
 - 150k CPU.hours

Software – SLAC's ACE3P codes

	Module Name	Description	
Frequency Domain	Omega3P	Eigen-solver for resonant modes	
	S3P	S-Parameters	
Time Domain	T3P	Excitation of fields by relativistic bunch	
	Pic3P	PIC code for space- charge dominated devices	
	Track3P	Particle tracking for multipacting & dark current	
Multi-physics	TEM3P	EM, thermal, mechanical	Hollow

Bead-pull technique

Energy resonantly exchanged between E & B fields.

A perturbation affecting the stored energy will therefore alter the frequency.

$$\left(\frac{\Delta f}{f}\right) = \left(\frac{k}{4U}\right) \iint \left(\mu H(x, y)^2 - \epsilon E(x, y)^2\right) dx dy$$

There are many other ways to perform this calculation, including observation of phase changes, etc.

RHUL Bead Pull Facility

- Funded by college grant
- Construction ~75% complete
 - Summer student to build & test control system
- Initial tests on prototype BPMs
 - Cavity loans:
 - Beta=1 SPL cavity
 - FETS RFQ prototype

RHUL Bead Pull Facility

FETS RFQ prototype

Thank you for listening!

