

STATUS OF THE BETA=0.65 CAVITY FOR SPL LINAC

G. Olry, CNRS-IPN Orsay

OUTLINE

Requirements

Since November 2009 (last SPL coll. meeting), studies in 2 phases

- Nov '09 March '10: first design
 - 2D (Superfish™) and 3D (CST Microwave Studio™) calculations on:
 - Cell-to-cell coupling factor
 - Adjustments and shape sensitivity for field flatness
 - Positioning of the power coupler (external Q)
 - Mechanical design
 - Static load (2 bars @300K), Lorentz forces detuning
 - Helium tank design
- April '10-nowadays (still on-going): new design
 - New parameters for vacuum load: 1.5 bars@300K
 - Proposal for another design: new end-groups (same as β = 1 CEA)
- Conclusion & Planning

REQUIREMENTS

Table 4.11: SPL superconducting linac design parameters

Maximum peak surface electric field	50 MV/m
Maximum peak surface magnetic field	100 mT
Cavity quality factor at 2 K	$\geq 10^{10}$
Accelerating gradient ($\beta = 0.65$)	19 MV/m
Accelerating gradient ($\beta = 1.0$)	25 MV/m
$R/Q \ (\beta = 0.65)$	290 Ω
$R/Q \ (\beta = 1.0)$	570 Ω
Frequency	704.4 MHz
Number of cells	5

GOALS

Epeak/Eacc < 2.6

Bpeak/Eacc < 5.2 mT/(MV/m)

+

Cell-to-cell coupling factor k ≈ 1.5 %

Conceptual design of the SPL II, CERN-2006-006

Starting point:

1999, EUROTRANS cavity β = 0.65

	Cavité β _g =0,47	Cavité β _g =0,65
[Bpk/Ecco]ref (mT/MV/m)	5,88	4,88
[E _{pk} /E _{acc}] _{ref}	3,58	2,61
G (Ω)	152,7	194,1
$[\mathbf{r}/\mathbf{Q}]_{ref}(\Omega)$	79,5	157,5
K (%)†	1,35	1,11
plat de champ (%)	1,3	1,3
f _{SUPERFISH} (MHz)	704,42	704,42

J-Luc Biarrotte, PhD Thesis, 2000, Orsay

NOV '09 - MARCH '10: FIRST DESIGN

2D STUDY (SUPERFISH)

Designed with <u>Build cavity</u> (Paolo Pierini, INFN Milano) Poisson Superfish Interface for multi-cell cavity design.

Parameterisation:

The different parameters were iteratively optimised & the frequency readjusted by retuning the cell radius "R".

2D STUDY (SUPERFISH)

- →Design of the cells
- →Input for 3D calculations with RF coupler port

	Left Cel	Internal Cel	Right Cel
R	184.67	184.67	184.67
L	69	69	69
Riris	40	48	60
Α	41.62	47.10	53.02
В	39.53	44.75	55.67
а	15.15	14.26	13.17
b	25.0	23.53	21.73
L_tube	150		170 before
			shrinking

F. Bouly (IPNO)

Frequency = 704.407 MHz Q0 (@ 2K) = 3.9 10¹⁰

At B_g = 0.65 r/Q = 299
Epeak/Eacc = 2.5 Bpeak/Eacc = 4.9 mT/(MV/m)

Electromagnetic field data from the following problem name: SuperFish File generated from BuildCav 1.3.4

Field Flatness: 2.55%

3D CALCULATIONS (MWS)

1		
Name	Value	Description
Dp	72	Distance port-cellule
Lant	151	Longueur antenne
.cone	30	Longueur cone
.e	Lm	Demi callule d'entrée
.m	69	Demi cellule intermédiaire
P	150	Longueur port
	Lm	Demi cellule de sortie
е	140	Longueur tube d'entrée
ts	140	Longueur tube de sortie
ts2	30	Longueur tube 2
eta	.65	
1e	40	Demi cellule d'entrée
Im 🔷	48	Demi cellule intermédiaire
1s 2	60	Demi cellule de sortie
2e	r2m	Demi cellule d'entrée
2m	184.5	Demi cellule intermédiaire
2s	r2m	Demi-sellule de sortie
ant	21.7	Rayon antenne
р	50	Rayon port coupleur
(1e	15.2	Demi cellule d'entrée
dm.	14.3	Demi cellule intermédiaire
x1s	13.2	Demi cellule de sortie
(2e 3	41.6	Demi cellule d'entrée
x2m	47.1	Demi cellule intermédiaire
rx2s	53	Demi cellule de sortie
ry1e	25	Demi cellule d'entrée
ry1m	23.5	Demi cellule intermédiaire
ry1s	21.7	Demi cellule de sortie
ry2e	39.5	Demi cellule d'entrée
ry2m	44.7	Demi cellule intermédiaire
ry2s	55.7	Demi cellule de sortie

rx2

3D CALCULATIONS: FIELDS & QEXT

F. Bouly & D. Longuevergne (IPNO)

Freq = 704.3 MHz Q_{ext} = 1.09 10⁶ Q_{o} (@ 2K) = 2.8 10¹⁰ K = 1.47 %

External coupling adjusted with the penetration length of the antenna

3D CALCULATIONS: RF PARAMETERS

Evolution of the peak fields ratios as function of the reduced velocity B

F. Bouly (IPNO)

At Bg = 0.65

Bpk/Eacc = 5.1 mT/(MV/m)

Epk/Eacc = 2.6

 $r/Q \approx 300$

At Bopt = 0.69

Bpk/Eacc = 4.9 mT/(MV/m)

Epk/Eacc = 2.5

 $r/Q \approx 325$

MECHANICAL CALCULATIONS

☐ Main pb: Von Mises stresses > 50 MPa for 2 bar @ 300K with only 4 mm → end-cell thickness increased to 5mm

□ Lorentz forces detuning with 1 stiffening ring between cells: K_L < -1 Hz/(MV/m)²

HELIUM VESSEL INTEGRATION

Influence of the thermal contraction 300K→4K

Volume decrease: V 0.99857

→ Cavity frequency shift: +1 MHz

Influence of the chemical etching

Assumption: 100µm removed uniformly from the cavity walls

→ Cavity frequency shift: - 0.4 MHz

APRIL 910 -...: NEW DESIGN

NEW DESIGN: NEW OPTIONS

Starting point: discussions with CERN & CEA \rightarrow get the same end-groups than those designed for the $\beta=1$ \longrightarrow SAME INTERFACES

Main changes:

- →Bigger beam tubes apertures on both sides
- →New design of the 2 external half cells (field flatness)
- → New helium vessel (including the tuning system interface)
- →New position of the power coupler (Qext)

+

→ New parameters for vacuum load: 1.5 bar @300K

MECHANICAL CALCULATIONS

■ Von Mises stresses for 1.5 bar @ 300K < 50 MPa with 4mm
 (3.5mm should be ok for the inner cells)

□ Lorentz forces detuning (still 1 ring) : $K_{L^{\sim}}$ -1.6 Hz/(MV/m)²

CAVITY INTEGRATION

□ beta=0.65 cavity inside beta=1 helium vessel

RF DESIGN

2D and 3D studies

	Left Cell [tuning system	Inner	Right Cell [coupler side]
	side]	Cell	
R	184.6	184.6	184.6
L	69	69	69
Riris	65 (40)	48	70 (60)
Α	52.2	47.1	53.0
В	41.8	44.75	37.1
а	10.7	14.3	10.7
b	19.3	23.5	21.5
L_tub	85 (before conical		150 (before conical
е	reduction)		reduction)

No changes 1.50E+06 1.10E+06 9.00E+05 1.00E+05 1.00E+05 Antenna position as regard to the beam axis (mm)

RF PARAMETERS...STILL OK

First Design

f (MHz)	704.3
Epk/Eacc	2.58
Bpk/Eacc (mT/MV/m)	5.10
K (%)	1.47
r/Q (Ohm)	301
G (Ohm)	200
Vacc @βg & 1 Joule (MV)	1.16
Qo (@2K, Rres=2n Ω)	3.8 10 ¹⁰
Transit Time Factor	0.7

Second Design with new end-groups

f (MHz)	704.0
Epk/Eacc	2.63
Bpk/Eacc (mT/MV/m)	5.12
K (%)	1.45
r/Q (Ohm)	275
G (Ohm)	197
Vacc @βg & 1 Joule (MV)	1.11
Qo (@2K, Rres=2n Ω)	3.9 10 ¹⁰
Transit Time Factor	0.65

CONCLUSIONS

- □ RF Design: best compromise to fulfil requirements, especially adjusting k% & Epeak/Eacc.
- Mechanical calculations: OK
- 2 designs of cavity + tank

Planning

- July-Aug'10: Technical drawings & call for tender preparation (cavity
 - + Niobium)
- Sept-Oct'10: Call for tender
- Nov'10: Choice of the manufacturer
- Dec'10: Start of the fabrication
- Sept'11: Cavity delivery (w/o tank)
- Oct'11: Field flatness
- Nov'11: Cavity + tank delivery
- Dec'11: Preparation (BCP + HPR) and test (Vertical cryostat)

