

Prospects of $J/\psi \rightarrow \mu^{\dagger}\mu^{\dagger}$ measurements in CMS

Roberto Covarelli (CERN)

on behalf of the CMS collaboration

"Quarkonium production at the LHC" workshop

CERN - 19 Feb 2010

Outline

- The CMS detector
- Cross-section measurement prospects in CMS
 - 2007 MC-based analysis (14 TeV)
 - Results for yields and non-prompt J/ψ fraction
- Analysis improvements:
 - Muon reconstruction and selection
 - Triggers for low luminosity
- Perspectives in first data:
 - 2009 MC-based analysis (0.9 and 2.36 TeV)
 - Search in December '09 data
 - Other possible analyses
- Conclusions

The CMS detector

Quarkonium production workshop (DT)

Resistive Plate Chambers (RPC)

Chambers (RPC)

The J/ ψ x-section formula

$$\frac{d\sigma}{dp_T}(J/\psi) \cdot Br(J/\psi \to \mu^+ \mu^-) = \frac{N_{J/\psi}^{fit}}{\int Ldt \cdot A \cdot \lambda_{trigger}^{corr} \cdot \lambda_{reco}^{corr} \cdot \Delta p_T}$$

- $N_{J/\psi}^{fil} = (1 f_B) N_{J/\psi}^{tot}$ (prompt) or $f_B N_{J/\psi}^{tot}$ (non-prompt) *
- $\int Ldt$ = integrated luminosity
- A = signal acceptance/efficiency (from MC modeling) *
- $\lambda_{trigger}^{corr} \cdot \lambda_{reco}^{corr} = \text{trigger/reconstruction efficiency MC/data correction}$ (to be determined with "tag-and-probe" method) *
- $\Delta p_T = p_T \text{ bin size *}$

Differential x-section in rapidity can be considered, depending on available statistics ← separation of barrel/endcap implies simpler mass description (see next slides)

* = function of p_T

MC event generation

- Signal $(p_T^{\mu} > 2.5 \text{ GeV/}c, |\eta^{\mu}| < 2.4)$
 - − Prompt J/ψ → PYTHIA6
 - Color Singlet + Color Octet model
 - COM non-perturbative factors $< O_n(^{2S+1}L_J) >$ fitted from CDF results
 - Cross-section reweighting with p_{T0}^2 cut-off
 - Fragmentation parameters set to obtain "high" soft-gluon radiation (details in Aafke's talk)
 - uniform polarization
 - Non-prompt J/ ψ > PYTHIA6 (no EvtGen!)
- Background $(p_T^{\mu} > 2.5 \text{ GeV/}c, |\eta^{\mu}| < 2.4)$
 - Muon-enriched QCD events → PYTHIA6
 Main sources of background from MC-truth information:
 - D and B meson decays
 - Decay in flight of π and K
 - Hadron punch-through

Muon reconstruction in CMS

2(8 p_/p) [%]

- Large rapidity coverage:
 - $|\eta| < 2.4$
- Excellent muon momentum resolution:
 - matching between μ -chambers and in the silicon tracker (only using the latter for momentum determination at low p_T)
 - strong solenoidal magnetic field

(3.8 T)

Because of the increasing material thickness traversed and the different lever arm, the resolution changes with pseudo-rapidity

J/ψ yields $(N_{J/\psi}^{tot})$

477	
$p_T^{I/\psi}$ bin	Yield
GeV/c	N_{sig}
5-6	2591±52
6-7	11098±109
7-8	17565±137
8-9	20007±147
9-10	18856 ± 141
10-11	16601±132
11-12	13685 ± 119
12-13	10669±106
13-14	8304⊥93
14-15	6513±82
15-17	8923±96
17-20	7420 ± 88
20-24	4480±68
24-30	2617±52
30-40	1287±36

Total 150 600 ± 380

Double-muon trigger with $p_T > 3 \text{ GeV}/c$ $\frac{3 \text{ pb}^{-1}}{1000}$ integrated luminosity (14 TeV)

Resolution (barrel) $\sigma \sim 20 \text{ MeV}/c^2$ Resolution (endcap) $\sigma \sim 37 \text{ MeV}/c^2$

- 2-Gaussian shape due to non optimal muon momentum scale in endcaps → now fixed in MC
- Momentum scale must then be extracted from data

B-fraction (f_B)

- Using a 2D-fit to invariant mass and proper decay length distributions:
 - Proper decay length calculated from decay length in the lab frame
 - Secondary vertex from a Kalman vertex fit to the two muon tracks

$$\ell^{J/\psi} \equiv \frac{L_{xy}^{J/\psi} \cdot M_{J/\psi}}{p_T^{J/\psi}}$$

- For prompt events, expected to be a simple δ-function
- For <u>non-prompt events</u>, it has an exponential shape with λ_B^{eff} [but smearing effects must be considered since in this case we are using the "pseudo"-proper decay length, i.e. $(M/p_T)_{J/\psi}$ instead of $(M/p_T)_B$]
- For <u>background events</u> a generic superposition of different contributions (symmetric + asymmetric with effective lifetimes) is adopted

Convoluted with 2-Gauss resolution

B-fraction (f_B)

- From 14 TeV result (2007):
 - global-global combinations only
 - 3 pb⁻¹ equivalent luminosity

- $-15 \text{ bins: } 5 < p_T < 40 \text{ GeV/}c$
- $-1 \text{ bin: } |\eta| < 2.4$

NO BIAS
OBSERVED
FROM FITTING
TECHNIQUE

$$\sigma_{\text{stat}}(N_{J/\psi}^{prompt}) = 1.8\% - 5\%$$

$$\sigma_{\text{stat}}(N_{J/\psi}^{non-prompt})$$
= 2% - 10%

Acceptance calculation (A)

- Geometrical acceptance and reconstruction efficiency for the signal is first estimated from MonteCarlo
- Main contribution to systematics expected from unknown J/ψ spin alignment
 - In the 2007 work, estimated using differences in acceptance between the unpolarized case and the extreme polarization values in the helicity frame (all longitudinal, all transverse)
 - A more reliable procedure was outlined recently considering both helicity and Collins-Soper frames (details in Pietro's talk)

Efficiency corrections (λ)

- MC efficiency is used in the 2007 analysis ($\lambda = 1$)
- "Tag-and-probe" method:
 - Given a cleanly identified ("tag") muon, estimate number of other muons satisfying or not certain steps of reconstruction ("probes") from a fit to the J/ψ mass vs. p_T, η of the muon ← selection independent
 - Reconstruction:
 - Tag: reconstructed muon with $p_T > 3 \text{ GeV/}c$

$$\varepsilon_{trk} = N_{trk+\mu C} / N_{\mu C}$$

$$\varepsilon_{\mu-ID} = N_{trk+\mu C} / N_{trk}$$

Limited by muon resolution in μ-chambers and biased

- Well established

- Trigger:
 - Tag: reconstructed muon matched to a trigger object

$$arepsilon_{trig} = N_{global-\mu+trig} \, / \, N_{global-\mu}$$

- Limitations of the method:
 - Fit precision
 - Correlation between muons (e.g. small ΔR)

Systematic uncertainties

Parameter affected	Source	Δσ/σ		
Luminosity	osity Luminosity			
Number of J/ψ	J/ψ mass fit	1.0 - 6.3 %		
Number of J/ψ	Momentum scale	$\sim 1 \%$		
Total efficiency	l efficiency J/ψ polarization			
Total efficiency	Total efficiency $J/\psi p_T$ binning			
Total efficiency	MC statistics	0.5 - 1.7 %		
$\lambda_{reconstruction}$	Non-perfect detector simulation	~ 5 %		
$\lambda_{trigger}$	Non-perfect detector simulation	~ 5 %		
B fraction	ℓ_{xy} resolution model	0 1.9 %		
B fraction	B-hadron lifetime model	0.01 - 0.05 %		
B fraction	B fraction Background			
B fraction	Misalignment	0.7 - 3.5 %		
Total systematic uncertainty 13-19 %				

- Invariant mass

ı	1.0 1-1		100 -1-1	1.11
		10 pb 1	$100 \mathrm{pb^{-1}}$	ideal
	J/ψ mass resolution (MeV/c ²)	34.2	30.5	29.5

Effects of misalignment on:

- Lifetime

Quarkonium production workshop

Roberto Covarelli

Improvements since 2007 (1)

MC Generators:

- EvtGen / PHOTOS have now been introduced in CMS and used to simulate properly B \rightarrow J/ ψ X decays / generate FSR
- Muon trigger and reconstruction:
 - A reconstructed muon ("global" muon) in CMS is defined as a μ-chamber "seed", then matched to a track in the tracking devices:

- In order to compute a rough momentum estimate and thus fire the Level-1 trigger, hits must be in at least two stations
- Curvature due to the Bfield and material crossed limit the p_T acceptance

Improvements since 2007 (2)

- The idea of "tracker muons":
 - Perform the reconstruction inside-out, starting from a silicon track and searching for any possible compatible muon signal in the chambers (even in one station)
 - Tight selections on track-segment matching are required to keep hadron background under control
 - Calorimeters can be also exploited to check compatibility with MIP energy deposits
 - Efficiency is enhanced by a large factor, especially at low p_T

• Problem:

 This procedure cannot be done at trigger level due to processing-time limitations

but...

Improvements since 2007 (3)

- ... trigger strategies can evolve/ be optimized to LHC luminosity
 - Write on tape all minimum-bias triggers (maximum advantage from all types of muons)
 - Use single-muon triggers
 - Use ad-hoc intermediate solutions:
 - Example 1: combining a single-muon trigger with other information, profiting from the CMS High-Level Trigger versatility
 - Use only double-muon triggers (2007 analysis, almost no benefit from tracker muons)

$$10^{29} - 10^{30} \text{ cm}^{-2} \text{s}^{-1}$$

$$\sim 10^{32} \text{ cm}^{-2} \text{s}^{-1}$$

MC analysis at 0.9-2.36 TeV

- Event selection:
 - All tracks:
 - N_{hits} (pixels + strips) > 12
 - $|d_0| < 5$ cm, $|d_z| < 20$ cm
 - "Global" muons: normalized global $\chi^2 < 20$
 - "Tracker" muons:
 - normalized track $\chi^2 < 5$
 - tight angular compatibility between track and muon segment directions
 - Probability of the di-muon vertex > 0.001

in the mass window 3.0-3.2 GeV. 900 GeV 2.36 TeV per nb⁻¹ prompt J/ψ background prompt J/ψ background 5.6 ± 0.1 0.3 ± 0.2 17.6 ± 0.3 1.3 ± 0.5 global - global global - tracker 19.1 ± 0.2 1.5 ± 0.5 43.7 ± 0.4 6.4 ± 1.1 8.3 ± 0.1 1.3 ± 0.4 16.3 ± 0.2 4.8 ± 0.9 tracker - tracker

 Here neglecting contributions of B → J/ψ X decays, expected to be < 10% in total

MC results at 0.9-2.36 TeV

12 JN/dM [per 10 MeV] Using simulation of #J/ψ per nb⁻¹: 78 CMS simulation 2009 CMS as close as 10 possible to the 2360 GeV expected initial per nb⁻¹ detector conditions plus tracker-tracker dN/dp₇ [per 400 MeV] plus global-tracker global-global M [GeV] 3-2-1plus tracker-tracker plus global-tracker 7 8 p_τ (J/ψ) [GeV/c]

global-global

Search for J/ψ in data

- Minimum-bias events triggered using coincidence of beam scintillators (approximate collected luminosity: 10 μb⁻¹ at 900 GeV, 400 mb⁻¹ at 2.36 TeV)
- "Good" collision events selected based on generic criteria (tracker/muons in the data-taking, presence of at least a reconstructed primary vertex ... etc.), then analysis requirements are applied

The " J/ψ " event display

Quarkonium pr

 $c\tau = -17 \pm 81 \mu m$

Other on-going studies

- Wide physics program for quarkonia in CMS:
 - Production cross-section measurement (J/ ψ and Y's)
 - The expected Y-peak resolution of $\sim 90 \text{ MeV}/c^2$ allows to separate the three states, at least in the muon barrel
 - Spin alignment measurement (J/ψ and Y's)
 - Depending crucially on detector acceptance: detailed studies ongoing
 - P-wave state (χ_c, χ_b) radiative decays
 - Very useful to extract direct J/ ψ / Y production, but depending on the performance of identifying low-energy photons in data
 - Quarkonia in di-electron channel
 - Depending on the performance of triggering/identifying low-pT electrons in data (huge amount of *bremsstrahlung* in the tracker material): probably adding not so much to the di-muon yields

Conclusions

- Perspectives of $J/\psi \to \mu^+\mu^-$ measurements with the CMS detector have been presented
- The cross-section measurement prospects have been investigated:
 - with the old nominal LHC energy / luminosity / trigger strategy
 - using 15 p_T bins between 5 and 40 GeV/c and the full rapidity range
 - Effective separation of prompt and non-prompt contribution using proper decay length distributions
 - Total uncertainties vary with the p_T bin and are of the order of 5% statistical and 15% systematic with an integrated luminosity of 3 pb⁻¹
- Current analysis of MC and data has large benefits from improvements on muon reconstruction and relaxed trigger criteria, both in terms of yields and lower p_T reach
 - Clean "observation" possible with only 1 nb⁻¹ of data
 - One suitable candidate already found in December LHC data

Backup slides

CRAFT results

14 TeV vs. 7 TeV cross-sections

Cross-section x BR	Prompt J/ψ → μμ	QCD
14 TeV	21.0 μb	54.71 mb
10 TeV	15.6 μb	51.60 mb
7 TeV	12.6 μb	48.44 mb