
Progress in understanding quarkonium 
polarization measurements
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1. Why it is essential that we approach the measurement of polarization as a 
multidimensional problem: we must not average out information!

2. Why using more than one polarization frame in our experimental analysis we 
can provide clearer and more straightforward physical information

3. How we can perform self-consistency checks using frame-independent 
relations among the angular parameters
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The theory “puzzle”

λθ

CDF Run II data: prompt J/ψ @1.96TeV

CDF Coll., PRL 99, 132001 (2007)
weak “longitudinal” polarization

NRQCD factorization: prompt J/ψ 
Braaten, Kniehl, Lee, PRD62, 094005 (2000)
strong “transverse” polarization

NLO colour-singlet: direct J/ψ
Haberzettl, Lansberg, PRL100, 032006 (2008)
strong “longitudinal” polarization

d cosθ
1 + λθ cos2θ

dN θ = angle between lepton direction
(in the J/ψ rest frame)
and J/ψ lab direction (helicity axis)

2



Experimental puzzles: J/ψ

E866:            0.25 < xF < 0.45,    √s = 38.8 GeV
HERA-B:     -0.34 < xF < 0.14,     √s = 41.6 GeV
CDF:                |yCM| < 0.6,         √s = 1960 GeV

E866:      PRL 91, 211801 (2003)
HERA-B: EPJ C 60, 517 (2009)

Helicity

Collins-Soper

Collins-Soper

CDF Run I:  PRL 85, 2886 (2000)
CDF Run II: PRL 99, 132001 (2007)

CDF vs  CDF

E866 vs  HERA-B →  there must 
be a strong pL dependence

CDF vs  low-pT →  how do the 
different frame conventions
affect the comparison?

Helicity

•

•

•
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Experimental puzzles: 

E866 →  (~ directly produced) (2S+3S) 
have Drell-Yan-like polarization
(Collins-Soper frame!)

E866 (1S) vs (2S+3S) →  dominant 
feed-down effects for (1S)?

CDF vs  D0 → may a 
strong rapidity 
dependence justify the 
discrepancy?
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D0 Run II:  PRL 101, 182004 (2008)
CDF Run I: PRL 88, 161802 (2002)
CDF Run II preliminary

(1S), √s = 1.96 TeV

•

•

•
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What to improve
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This complex and confusing situation can only be clarified by better measurements.

In the new analyses we must avoid the simplifications that make the present results 
so difficult to be interpreted. We will illustrate the crucial importance and/or the 
advantages of

• measuring the full angular decay distribution, not only the polar anisotropy,

• providing results in at least two polarization frames,

• avoiding averages over large kinematic intervals (e.g. over the whole rapidity range),

• exploiting the existence of frame independent relations



Angles and frames
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quarkonium 
rest frame

production 
plane

yx

z

θ

φ

ℓ +

production plane

Helicity axis (HX): quarkonium momentum direction

Collins-Soper axis (CS): beam line direction

θ wrt a chosen polarization axis (z)

φ wrt the production plane (xz)

(positive) lepton direction:



“Unpolarized” J/ψ does not exist
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2 2( , ) 1 scos sin2 cin co ss2 oW        cos     

The most general J = 1 state that can be produced in one elementary subprocess is 
represented (wrt the chosen z axis) as a superposition of the three Jz eigenstates:

0 1 10 1 1A A A      

The general angular distribution of its parity-conserving decay into two fermions is:
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There is no combination of A0, A+1 and A-1 (with ∑m|Am|2 = 1) 
such that the angular distribution is isotropic (λθ = λφ = λθφ = 0). 
Only a fortunate mixture of subprocesses in peculiar kinematic 
conditions (or randomization effects) can lead to a cancellation of 
all three measured anisotropy parameters.

→ Polarization is a “necessary” property of J = 1 quarkonia.
An accurate knowledge of the net polarization of the observed 
sample is indispensable also for absolute cross-section 
determinations, because the quarkonium acceptance depends 
strongly on the dilepton decay kinematics.

with



The observed “polarization” depends on the frame
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For |pL| << pT the CS and HX frames differ by a rotation of  90º
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The azimuthal anisotropy is not a detail  
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These two decay distributions are indistinguishable when the azimuthal dependence 
is integrated out. But they correspond to opposite natural polarizations, which can 
only be originated by completely different production mechanisms.

In general, measurements not reporting the azimuthal anisotropy provide an 
incomplete physical result. Their fundamental interpretation is impossible (relies on 
arbitrary assumptions).
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A possible hypothesis about CDF’s J/ψ
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HERA-B has shown that low-pT J/ψ’s (at fixed-
target energies) are naturally polarized in the 
Collins-Soper frame (most significant λθ and 
purely polar anisotropy, λφ = 0).

If we assume that this continues to be 
valid up to collider energies, we can 
translate the CDF points from the helicity 
frame to the Collins-Soper frame and 
recognize a smoothly varying polarization 
from low to high quarkonium momentum.

P. Faccioli, C. Lourenço, J. Seixas and 

H.K. Wöhri, PRL 102, 151802 (2009) 



Message nº1
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Today, we are allowed to make the speculation in the previous slide because 
CDF has not reported the azimuthal anisotropy.

We have assumed that
λφ = 0 in the CS frame, 
automatically implying that a 
significant value of λφ should 
be measured in the HX frame:

By measuring also λφ CDF will remove this ambiguity of interpretation.

Measure the full angular decay distribution, not only 
the polar anisotropy.



Reference frames are not all equally good
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How the anisotropy parameters transform from one frame to another depends explicitly 
on the production kinematics.

Example: how would different experiments observe a Drell-Yan-like decay distribution
*“naturally” of the kind   1 + cos2θ in the Collins-Soper frame  – see e.g. E866’s  result] 
with an arbitrary choice of the reference frame?

We consider  decay. For simplicity of illustration we assume that each experiment has 
a flat acceptance in its nominal rapidity range:

CDF |y| < 0.6

D0 |y| < 1.8

ATLAS & CMS |y| < 2.5

ALICE e+e |y| < 0.9

ALICE μ+μ 2.5 < |y| < 4

LHCb 2 <|y| < 5



The lucky frame choice
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(CS in this case)

CDF
D0
ATLAS / CMS
ALICE e+e

ALICE μ+μ / LHCb



Less lucky choice
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(HX in this case)

CDF
D0
ATLAS / CMS
ALICE e+e

ALICE μ+μ / LHCb

λθ = +0.65

λθ = 0.10

+1/3



One more example
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“natural” polarization λθ = 1 in the CS frame, as seen in the HX frame

CDF
D0
ATLAS / CMS
ALICE e+e

ALICE μ+μ / LHCb

λθ = +0.5

λθ = 0.6



Message nº2
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When observed in an arbitrarily chosen frame, the simplest possible pattern of a 
constant natural polarization may be seen as a complex decay distribution rapidly 
changing with pT and rapidity. This is not wrong, but gives a misleading view of the 
phenomenon, even inducing an artificial dependence of the measurement on the 
specific kinematic window of the experiment.

Measure in more than one frame.



Message nº3
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In more complex cases (quarkonium not produced as a pure state; superposition of 
different processes...) the observed distribution has an intrinsic kinematic dependence.

For the comparison between experiments and with theory it is necessary to take into 
account the role of the experimental acceptance. The experiments measure the net 
polarization of the specific cocktail of quarkonium events accepted by detector, trigger 
and analysis cuts. If the polarization depends on the kinematics (“intrinsically” and/or 
“extrinsically”), the average polarization depends on the effective population of the 
collected events in the considered kinematic interval.

Two experiments may find different average polarizations in the same kinematic range if 
they have very different acceptance shapes in that range. The problem can be solved by 
presenting the result in a fine scan of the kinematic phase space.

The theoretical calculations for the average polarization in a certain kinematic range 
should in principle take into account how the momentum distribution is distorted by the 
acceptance of the specific experiment. As a better alternative, for each experiment 
theorists may provide several curves as a function of pT , one for each rapidity value, 
rather than integrating over rapidity as is currently done.

Avoid (as much as possible) kinematic averages.



Mind the sign
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1. always state the exact definition of the y axis: the sign of λθφ depends on it! 

Moreover, stay away from artificially “parity violating” definitions of the y axis direction, like

They cause a change in sign of the measured λθφ passing from positive to negative rapidity, 
e.g. in the example shown before:

As a consequence, λθφ would always be measured to be zero over any rapidity range 
symmetric wrt zero (if the detection efficiency is symmetric wrt zero)

2. avoid averaging positive- with negative-rapidity results OR  change the sign of y axis 
definitions like the above ones when passing from positive to negative rapidity

/ beam1beam1 beam2

beam1 beam2 / beam1

ˆ ˆ, ,J

J

p PP P
y y
P P p P





 
 

   

positive rapidity

negative rapidity



Polarization dependence of the dilepton acceptance
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Absolute cross section measurements depend on the knowledge (or lack of knowledge) 
of the polarization. In fact, the probability that quarkonium dileptons are accepted and 
reconstructed is very sensitive to the quarkonium decay kinematics.

μ1

μ2

LAB frame

μ1

μ2

Q-Qbar
rest frame

CS

HX

In experiments like CMS, for example, the minimum 
detector sensitivity to the muon momenta and the 
trigger cuts strongly suppress events where the two 
muons are emitted perpendicularly to the beam 
line, because one of the two has small lab pT . At 
high quarkonium pT , this configuration corresponds 
to cosθHX  ±1
or to cosθCS  0 and φCS  0˚, 180˚, 360˚

cosθHX

φCS

cosθcs

φHX
(1S), CMS-like MC with
pT(μ) > 3 GeV/c for both muons

pT() > 10 GeV/c,
|y()| < 1,

The efficiency determination in the zero-acceptance domains will be 100% dependent 
on the polarization information fed into the Monte Carlo simulation.

high pT



Not a one-dimensional problem either 
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The knowledge of the polar anisotropy alone in one arbitrarily chosen frame (or a range 
of hypotheses about it) is not, a priori, a sufficient input to an accurate determination of 
the experimental kinematic acceptance for the dileptons from quarkonium.
Ideally, the acceptance normalization of cross-section measurements (and the 
associated systematic uncertainty) should take into account a range of hypotheses for 
the full dilepton decay distribution.

In the absence of a complete 
measurement of such a distribution 
(early LHC analyses), one possible 
procedure is to determine the frame 
which maximizes the dependence of 
the acceptance on λθ and use that 
frame for the determination of the 
corresponding maximum systematic 
variation.

(1S), CMS-like MC,
pT(μ) > 3 GeV/c,

|y()| < 2.4
work by Sérgio Sampaio

ε(λθ ) 

ε(λθ =0)

CS

ε(λθ ) 

ε(λθ =0)

HX



The parameter space
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1. The ranges of allowed values for the three parameters of the angular 
distribution are correlated.

2. Simple relations constrain the way polar and azimuthal anisotropies can be 
observed in different frames.



Triangles
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|λθ| = |(1-3P0)/(1+P0)| ≤ 1.  By imposing that rotations of the polarization axis in the 
production plane do not violate this bound, the anisotropy parameters are found to 
satisfy the following triangle conditions:

Note: with the definition adopted here, |λφ| ≤ 1 and |λθφ| ≤ 1.
The widespread convention uses “ν” = 2λφ → |ν| ≤ 2.

λφ

λθ

|λφ|  ≤  ½(1 + λθ)

λθφ

λφ

|λθφ|  ≤  ½(1  λφ)



Lines
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It is a completely general result that any combination of anisotropy parameters 
of the following kind is frame-independent:

c1 (3 + λθ)  + c2 (1  λφ)

c3 (3 + λθ)  + c4 (1  λφ)
K{ci}  

=

Once a definition is chosen, each 
value of K defines one line in the 
(λθ , λφ) triangle.
Each line contains all (λθ , λφ) 
combinations corresponding to 
the same decay distribution as 
observed in all possible frames.

λφ

λθ

K =
1 + λθ + 2 λφ

3 + λθ

Example

[ c1=1, c2=2, c3=1, c4=0 ]



Basic meaning
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Let us suppose that in the collected events quarkonium (J = 1) was produced through n
different elementary subprocesses yielding angular momentum states of the kind

(wrt a given quantization axis), each one with probability .

The rotational properties of angular momentum eigenstates imply that each amplitude 
combination is independent of the choice of the quantization axis. 
The quantity

is therefore frame-independent. It can be determined in any frame as

Advantages of reporting polarization results in terms of (this or another) K:

• the choice of the polarization frame is really arbitrary: the measurement must always 
yield the same value of K

• measurements and theoretical calculations are free from the (acceptance-dependent!) 
“extrinsic” kinematic effect induced by frame transformations → cleaner comparisons
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Example
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Let us consider, for illustrative purposes, the following (purely hypothetic) mixture of 
subprocesses for  production:

1)  f (1) = 60% of the events have a natural transverse polarization in the CS frame

2)  f (2) = 40% of the events have a natural transverse polarization in the HX frame



Frame choice 1 
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All experiments choose the CS frame

CDF
D0
ATLAS / CMS
ALICE e+e

ALICE μ+μ / LHCb



Frame choice 2
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All experiments choose the HX frame

CDF
D0
ATLAS / CMS
ALICE e+e

ALICE μ+μ / LHCb



Any frame choice
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The experiments measure an invariant quantity, for example

CDF
D0
ATLAS / CMS
ALICE e+e

ALICE μ+μ / LHCb
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When the observed distribution reflects the superposition of two or more “natural 
polarizations”          , the quantity       is equal to their weighted average, irrespectively 
of the directions of the corresponding axes:

( )i

 

[ c1=1, c2=3, c3=0, c4=1 ]



The “Lam-Tung” limit
29

Another consequence of the rotational properties of angular momentum eigenstates is that 
for each single mixed state there always exists a 
quantization axis z’ with respect to which .

Consequently, quarkonium produced in each single elementary subprocess is always 
characterized by a dilepton decay distribution of the type

wrt its specific  “              ” axis.

What we have actually considered in the previous example is the “Drell-Yan-like case”
: each subprocess is characterized by a fully transversely polarized decay 

distribution ( ) wrt a certain “natural” axis, which may be different 
from subprocess to subprocess. Then                                         :

Actually, for the di-fermion decay of any J = 1 particle (even in parity-violating cases: W, Z)
it is possible to calculate a frame-independent relation of the form
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Why using two frames is important for the analysis
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As already discussed, detector and data selection constraints strongly “polarize” the 
reconstructed dilepton events. Background processes may also affect the measured 
polarization if not well subtracted.

The “detector polarization frame” is naturally defined in the LAB frame, not in the 
quarkonium rest frame: there is no “rotation” correlating it with the physically 
interesting frames. Something similar may be expected for the “background 
polarization frame”. In general, therefore, the spurious “polarizations” do not follow 
the physical transformation rules from one quarkonium polarization frame to another.

If not well corrected and subtracted, these effects will affect the shape of the 
measured quarkonium distribution differently in different polarization frames. In 
particular, they will violate the expected frame-independent relations between the 
quarkonium angular parameters. 

For this reason, checking whether the same value of an invariant quantity is obtained 
(within systematic errors) in two distinct polarization frames is a non-trivial test.

Any two physical polarization axes (defined in the quarkonium rest frame and 
belonging to the production plane) may be chosen. HX and CS frames are ideal choices 
at high pT . At low pT , where the difference between these two frames tends to 
vanish, any of the two and its exact orthogonal may be used to perform the test.



Example
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p(400 GeV/c)-Ap(158 GeV/c)-A

HX  / CSNA60 J/ψ prelim. (QM09)

Any of the invariant relations imply that, given two frames A and B,

or 0
BB AA

B A
   






 





  


At first glance:   λφ(CS)  λφ(HX)
while   λθ(CS) < λθ(HX)

→ check quantitatively by calculating
the average “polarization” constant
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




0.49 [± 0.13]

0.28  [± 0.12]

158 GeV/c

400 GeV/c

(errors not so relevant: CS and HX data 
are statistically correlated)

statistical errors only

order of magnitude of the expected 
systematic error on the anisotropy 
parameters

λ(HX)  λ(CS) =~ ~



Take-home messages

• Measure the full decay angular distribution

• Measure in no less than two reference frames

• Do not integrate out kinematic dependencies

• Report results also in terms of frame-invariant quantities
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