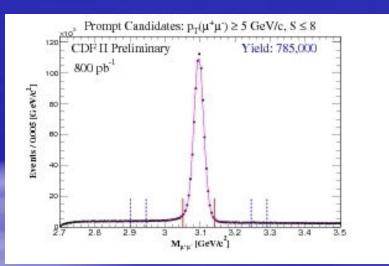
Quarkonium Physics at the Tevatron

James Russ Carnegie Mellon University

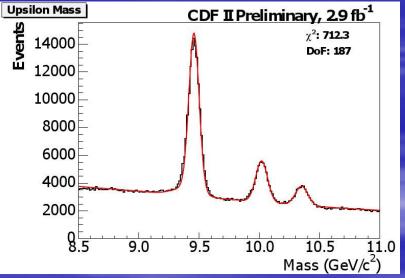
High Energy Vector Meson Production Mechanisms

- Long history of theoretical models to try to match vector meson data from Tevatron and HERA
 - cross section *problem* \Rightarrow CSM \rightarrow NRQCD
 - polarization problems with NRQCD \Rightarrow multi-gluon models
 - recent theoretical considerations raise questions about k_T factorization approach, Q fragmentation effects at Tevatron energies
- See recent review by J.-P. Lansberg for summary of theoretical situation (arXiv:0811.4005)

Experimental Results


- This talk's focus: Tevatron experimental results on vector meson production and polarization
 - J/ ψ and $\psi(2S)$ cross section and polarization from CDF
 - Y(1S) and Y(2S) polarization from D0
 - new results on Y(1S) polarization from CDF
 - production issues
 - **CDF work on new charmonia X(3872) and Y(4140)**
- Prospects for further Tevatron work will be given.

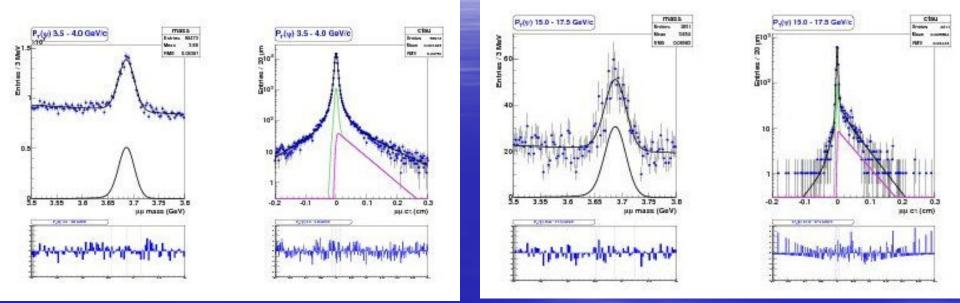
Measuring Polarization - I


- Polarization is an angular asymmetry: $dN/d(\cos \theta) \propto 1 + \alpha \cos^2 \theta$
 - what axis? The size of α depends on frame.
 - (aside: think of electron polarized along z-axis. If you measure spin along some other direction with direction cosine γ, the maximum polarization is γ.)
 - historically, low p_T fixed target experiments have analyzed in Collins-Soper frame.
 - high p_T collider experiments have used schannel helicity frame

Measuring Polarization - II

Background control is essential! Good CDF mass resolution helps enormously.

J/\u03c6 dominates; small backgnd


Y region has higher background, varying with dimuon mass.

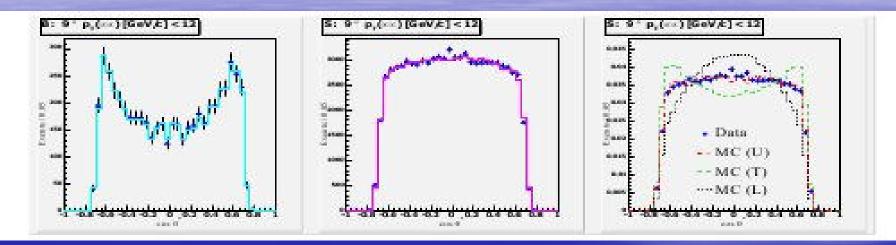
J/w Analysis

Classify J/ψ candidates as prompt or b-decay

- prompt candidates include feed-down from $\chi_{c, \psi}(2S)$ decays.
- separate b-decay candidates by impact parameter cut (equivalent to proper time cut). Measure and correct leak-through.
- divide data into bins of $p_T(\psi)$.
- in each p_T(ψ) bin define signal and sideband region.
 Assign events to bins of muon CM decay cosine cosθ.
 Use templates for pure L, T polarization to treat trigger and apparatus effects.

Prompt/b-decay Separation

 Mass and ct projections for two p_T bins illustrating joint mass-lifetime fit to identify prompt and b-decay selection.


Prompt J/ ψ Polarization

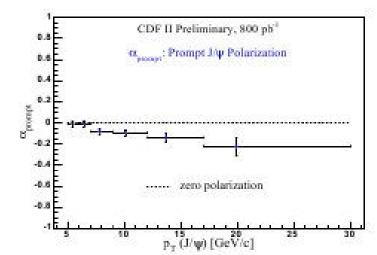
Select Prompt Events based on decay length

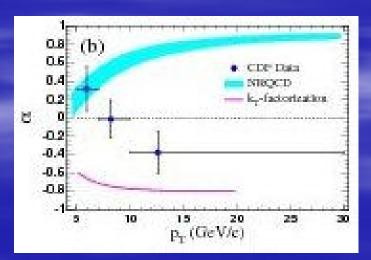
- in each p_T bin select prompt signal and sideband events from mass plot after cuts
- make cos θ distribution for each: total, backgnd
- make simultaneous fit to signal, backgnd distributions. χ^2 can be minimized analytically for backgnd. Determine L fraction, template normalization.

Analyze b-decay polarization in same way.

Sample Prompt J/y Polarization Fits

LEFT: background CENTER: polarization-weighted template fit and data RIGHT: same plot as center plus L and T template to illustrate sensitivity of measurement.


Typical plots; here $9 < p_T(J/\psi) < 12$ GeV/c. Background highly structured but small. Fitted templates give good description of data over whole angular region, esp. ends (tests efficiency function.).


Prompt J/ ψ , $\psi(2S)$ Polarization

 Prompt polarization in s-channel helicity frame is always longitudinal

 Trend is to become more longitudinal as p_T(ψ) increases

 Consistent with multi-gluon models but not NRQCD

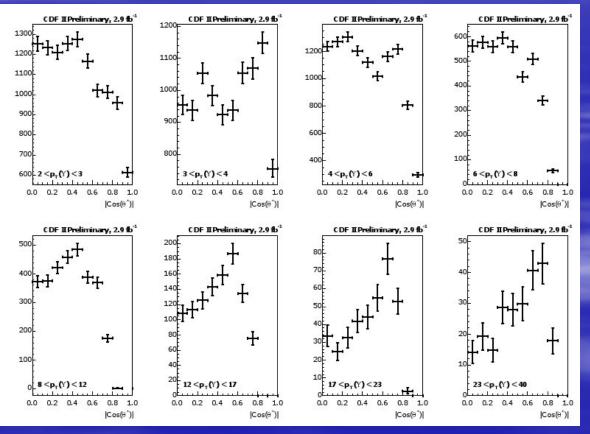
What About Y Polarization?

- Various theoretical papers about c quark being too light for factorization.
- Everyone agrees that Y(ns) polarization at high m_T is the acid test for NRQCD.
- CDF Run I Measurement does not show trend to T polarization, but m_T is limited.
- Recent D0 publication suggests possible trend toward T polarization.
 CDF has new Run II result.

CDF Y Analysis

Follow methodology of J/ψ analysis:

- make templates for L, T polarization to incorporate trigger, acceptance conditions
- Make MC-constrained mass fits in each cos θ bin to identify signal yield and background
- Make simultaneous fit to polarization parameter and background in cos θ bins

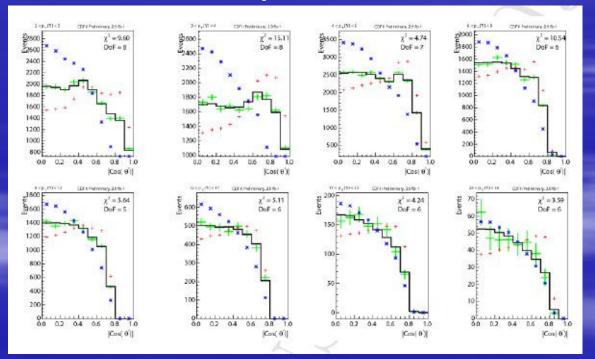

Check that $\cos \theta$ and p_T resolutions are good enough that there are no bin-smearing corrections.

Y-region Dimuon Background

- Just as in J/ ψ case, dimuon background has mass- and p_T-dependent angular variation

Plots show
 angular dist. of
 fitted backgnd for
 Y(1S) in 8 p_T bins

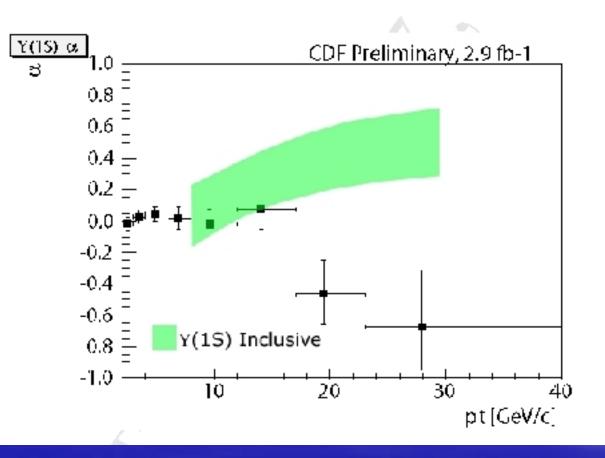
No prompt selection, so bkg includes heavy flavor + DY + junk



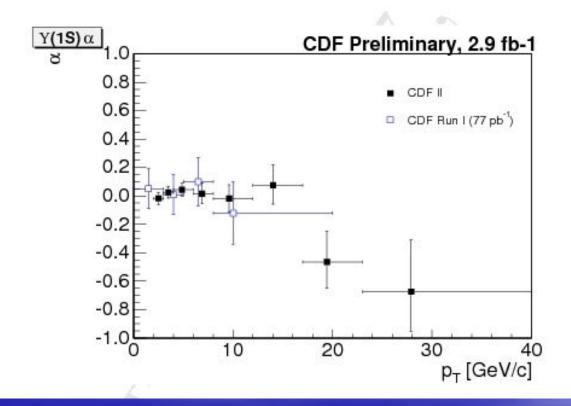
LHC Quarkonium Workshop

Y(1S) Polarization Fits

- Fitter is same as for J/ ψ . Blue points are L template, green + are T template in 10


|cosθ| bins
Solid line is best fit.
All bins have good χ².

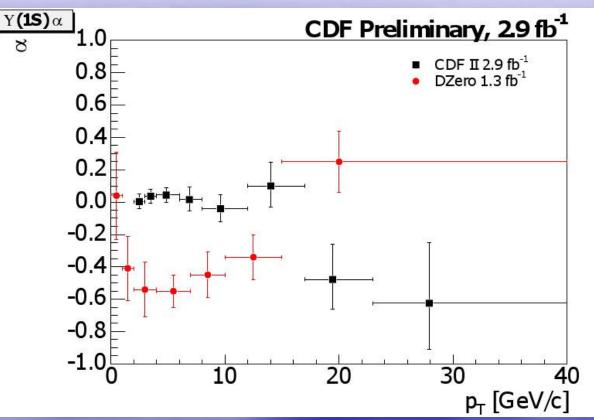
LHC Quarkonium Workshop


CDF Run II Y(1S) Polarization

Y(1S) prompt polarization, including feeddown from χ_{b} , Y(nS). Green is NRQCD (Braaten and Lee) including feeddown

Good Agreement with CDF-I

Polarization sm p_T < 20 GeV/c (m_T ~ 2.2 m_Y)
Run II data
L polarized at larger p_T

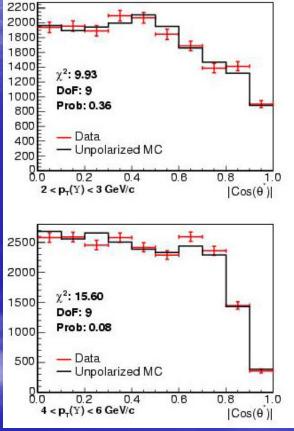

2/18/10

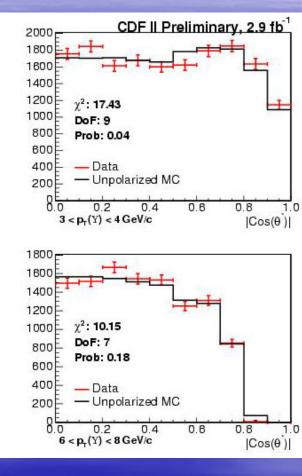
CDF Disagrees with D0

Trends are totally different.

D0: |y|< 1.8 CDF: |y|<0.6

D0: polarization Longitudinal for $p_T < m_T$

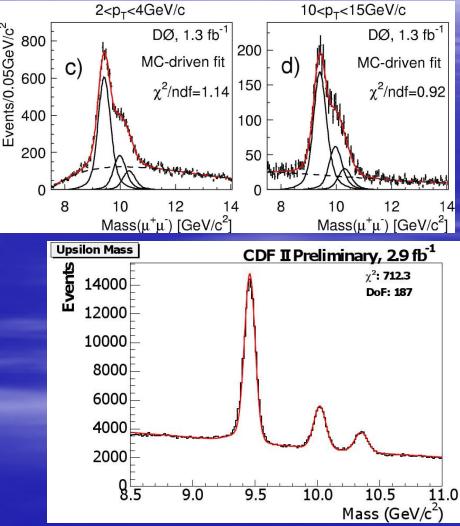

D0 paper: "We expect the CDF and D0 results to be similar and have no explanation for the observed difference." Same remarks apply here – no explanation.


Check: Is low $p_T Y(1S)$ data unpolarized?

• Generate unpolarized decays with Monte Carlo:

- Processed in same way as fully-polarized template samples
- Normalize to number of events in data and overlay
- <u>no fitting involved</u>.
- See good agreement

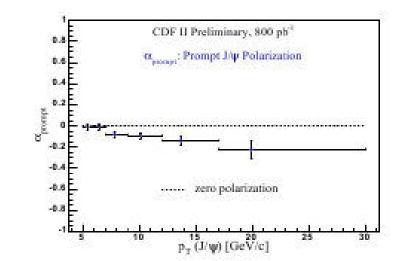
 CDF data do not support D0 claim of longitudinal polarization at low p_T

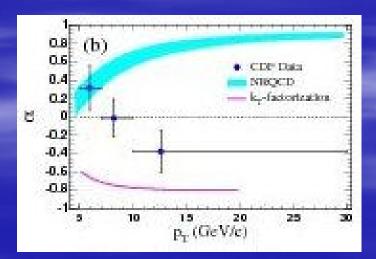


LHC Quarkonium Workshop

CDF/ D0 Differences

D0:Smooth data-driven backgnd shape under all mass peaks for each angle, p_T bin.


CDF: separate mass fits, backgnd for each Y(nS) peak. Results for Y(2S), Y(3S) ready soon. D0-style mass fit in each angle bin gives same results as this analysis.



Prompt J/ ψ , ψ (2S) Polarization -

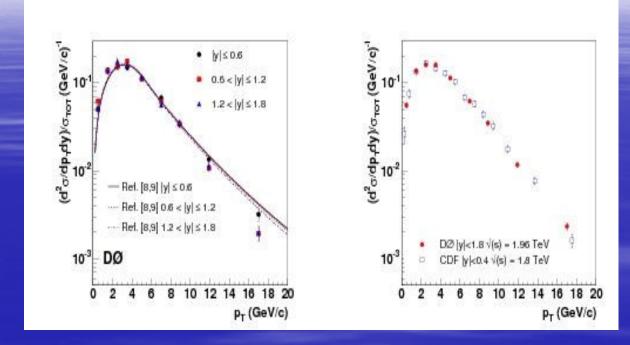
Recall that Y(1S)
 polarization is
 longitudinal
 for m_T(Y) > 2.2 m(Y)

Same feature seen in J/ψ at 2.2 m(J/ψ)

22189109

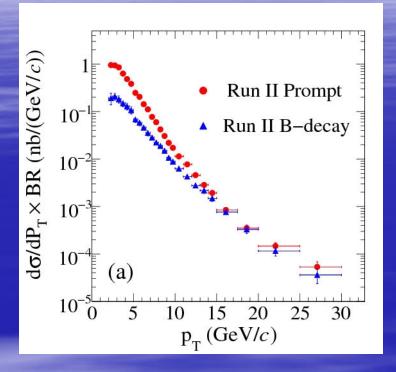
Polarization Summary

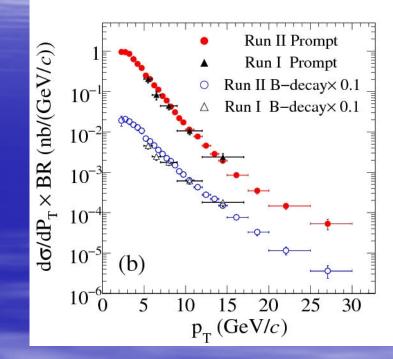
 CDF prompt vector meson polarizations show trend toward L polarization at high p_T in s-channel helicity frame
 Multi-gluon models predict this kind of behavior, but


- models go L at lower p_T than data

models are for *direct* production – data are prompt

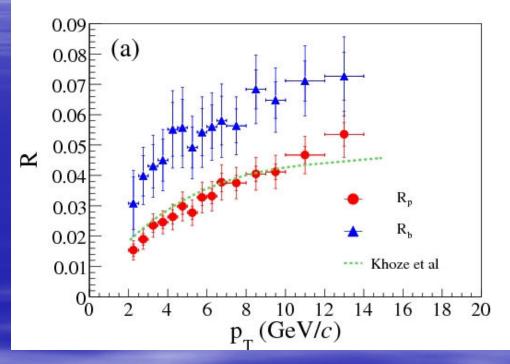
 multigluon models suggest Y(nS) states are not isolated – have to test in data


Backgrounds have angular structure. How much is due to Drell-Yan? What is DY polarization?


D0: Y(1S) Cross Section

D0 reported Y(1S) differential cross section, normalized to unit area, in 3 |y| regions: 0-.6, .6-1.2, 1.2-1.8. Some falloff in highest y-bin. For 0-.6, cross section agrees within uncertainties with CDF Run I result for 0-0.4. Shapes agree with model of Berger, Qui and Wang for $p_T \le m_T$

CDF: $\psi(2S)$ Production

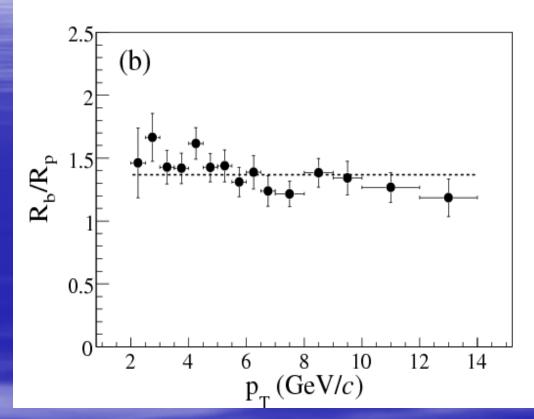

Prompt $\psi(2S)$ production falls off faster with p_T than b-production

Comparing to Run I, see small shift to larger cross section at given p_T for higher energy.

J/w Cross Section Curiosities -

CDF has measured J/ ψ and $\psi(2S)$ production cross sections, both direct and B-decay cases.

Question: when the c-cbar pair at a given p_T hadronizes into the 1S or 2S state, does it matter if it is directly produced or occurs in the B-decay environment?

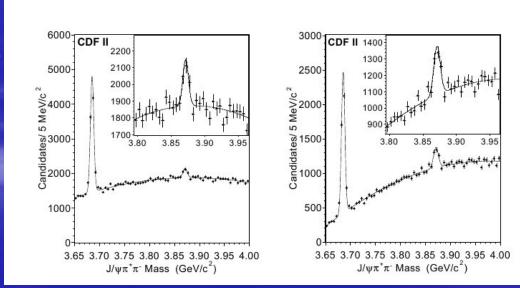

Khoze, et al.: $R = d\sigma/dp_T(2S)/d\sigma/dp_T(1S) \propto \alpha(m_T)^5/m_T^6$ on dimensional grounds in direct production. Fix ratio in p_T bin 8-9 GeV/c. Shape looks quite good at all other p_T . Is this fundamental?

LHC Quarkonium Workshop

J/y Cross Section Curiosities - II

In preceding R plot, b-decay result and direct production seemed to track in p_T . Take ratio of ratios:

Why should the ratio of bdecay hadronization to 2S and 1S charmonium have the same p_T -dependence as that of direct production?

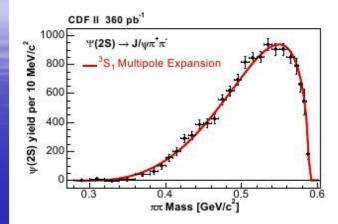

A question to be explored with more data going to higher p_T .

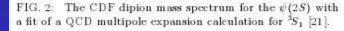
Onium Plans at Tevatron

Now have ~2X as much data at CDF – double statistics for Y, quintuple for J/ψ . Measure Y(nS) production cross sections Study Y isolation in production Try to identify DY component of dimuon continuum and measure polarization vs m_T • Measure χ_b , feed-down fractions for Y(1S) - D0 J/ ψ polarization result in process.

X(3872) Studies at CDF

- New charmonium states keep coming from Belle, BaBar, and (surprisingly) CDF.
- CDF uses natural calibration of ψ(2S) →J/ψ ππ to set cuts, calibrate mass for X(3872)
- Saw that ππ state prefers higher mass
 right plot is cut at 500 MeV/c²




X(3872) - II

- Improving analysis takes multivariant selection
 Making NN selection requires careful study of discriminating variables, resolution needs excellent detector understanding.
- Using B-decays and J/ψ decays to calibrate momentum scale is essential for precision. Material budget of detector also enters directly.
- Good vertex precision reduces number of fake candidates and lowers background.

X(3872) - III

Measure J^P at a hadron machine? Yes! ππ mass distribution sensitive to orbital angular momentum in decay and hence to parent's spin-parity Top: fit to expected shape for $\psi(2S) \rightarrow \psi(1S)\pi\pi$ (validate) Bottom: fit to L=0 and L=1 for X(3872) $\rightarrow \psi$ (1S) $\pi\pi$

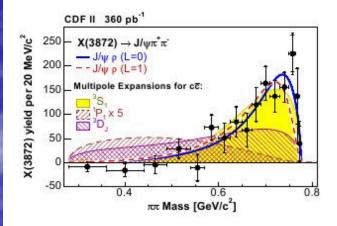
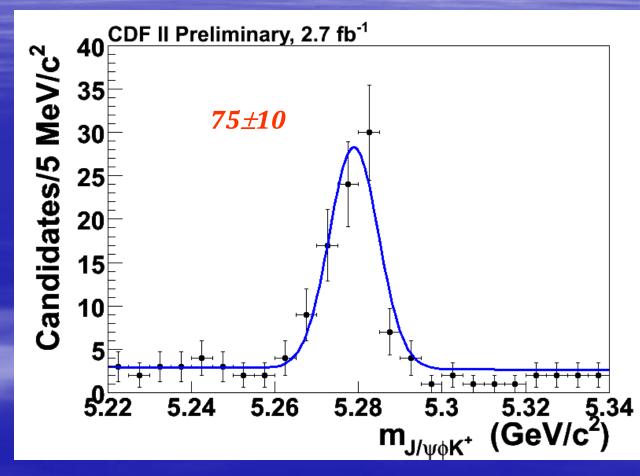
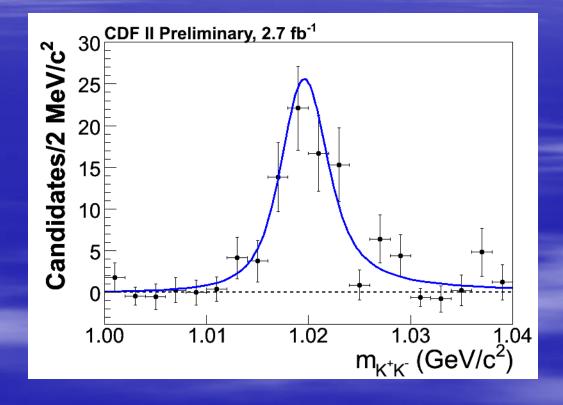


FIG. 3: The dipion mass spectrum for the X(3872), and fits to various hypotheses (see text). The fitted curve for the ${}^{1}P_{1}$ model is scaled up by a factor of 5 for better visibility.

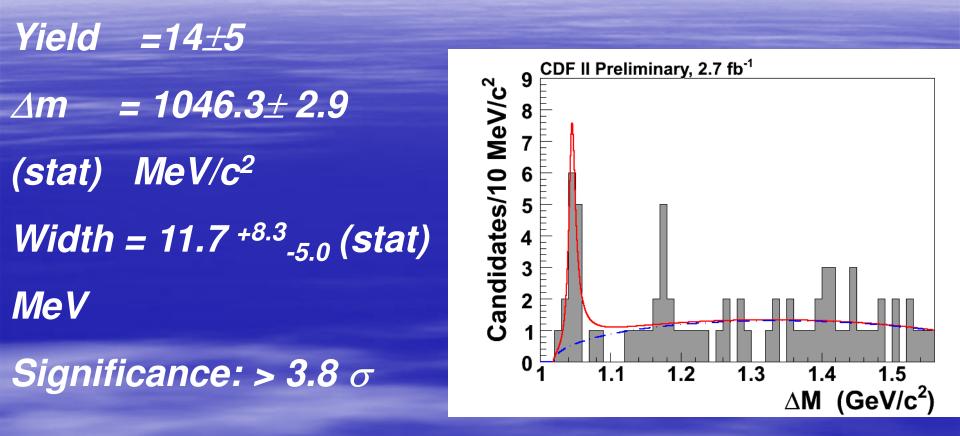

Another New State – Y(4140)

- The X(3872) tries to decay to J/ψρ ... but it's too light.
- Belle observes another threshold J/ ψ V state in B decays: Y(3930) \rightarrow J/ ψ ω
- CDF used its huge B \rightarrow J/ ψ X sample to look for a narrow J/ ψ ϕ state near threshold
- No good theory for these objects, but interesting experimental pattern.

$B^+ \rightarrow J/\psi \phi$ Signal


 Very clean signal, using PID to tag three kaons

Precise
 vertex
 definition
 keeps
 bckgnd low



Is There f⁰ Contamination?

- Make sideband-subtracted KK mass plot.
- Fit J=1 rel. BW
- Low-mass side of peak matches data
- No evidence for f⁰
- signal is pure $\psi \phi$

Evidence for a New State

Studies with ~2x more data now underway

2/18/10

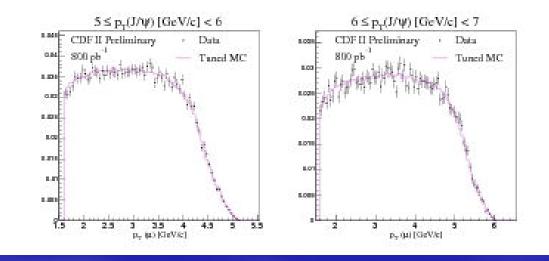
LHC Quarkonium Workshop

Summary -

- Quarkonium studies at hadron colliders benefit from excellent mass resolution to handle complicated background angular behavior.
- Prompt production is readily measured. Determining the direct production fraction is much harder but was done at CDF-I. It's important for comparing to theory.
- These methods can extend the p_T reach of the measurements toward 100 GeV/c at LHC.

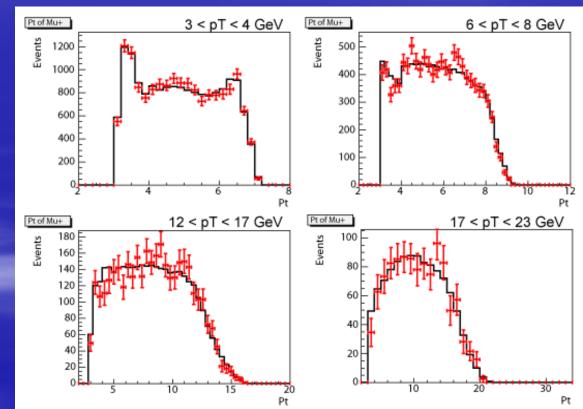
Summary - II

- Doing B-physics with μμ trigger has been very profitable for J/ ψX and μμX at CDF.
- J/ψ trigger can also be entrée to new charmonium states
- Using well-understood vector meson systems to probe trigger and detector is the first step toward wisdom at LHC.


Backup Slides

LHC Quarkonium Workshop

Data Check – µ⁺ Spectra


- Compare sideband-subtracted µ⁺ spectra to polarization-weighted template
- Catches bad detector performance, trigger issues, etc.

 This plot identified period of COT trouble as bad for polarization

 μ pT distributions for Y(1S) MC is weighted combination of T and L templates using α from polarization fit

- Edges and sharp structures are well- reproduced
- Reasonable χ^2 for all bins.
- Data are sidebandsubtracted (much more important here than for J/ψ.)

