Status of theory calculations & LHC predictions

Workshop on quarkonium production CERN

PIERRE ARTOISENET, The Ohio State University

February 19, 2010

Friday 19 February 2010

Direct production vs feed-down

- Quarkonium production can proceed directly through short-distance interactions of initial partons, or via the decay of heavier hadrons (feeddown)
- In the case of J/ψ production at the Tevatron, contributing mechanisms include
 - b-hadron decays: at Tevatron II, b→J/ψ+X accounts for 10% of the inclusive production rate at p_T=1.5 GeV (increasing to 45% at p_T=20 GeV) [CDF collaboration, 04]
 - * feed-down from charmonium states: at Tevatron I, $\psi(2S) \rightarrow J/\psi\pi\pi$ and $\chi_c \rightarrow J/\psi\gamma$ accounts for 35% of the prompt production rate [CDF collaboration, 97]

Charmonium production from b-hadron decays and quarkonium feeddown mechanisms cannot be neglected in hadron collisions

Outline

Let us review the current theoretical understanding by introducing the issues one by one:

Feed-down from b-hadron decays

Tevatron data, run II: $b \rightarrow J/\psi(2S)+X$, $b \rightarrow \psi(2S)+X$

Feed-down from excited quarkonium states

Tevatron data, run I: $\chi_c \rightarrow J/\psi\gamma$, $\chi_b \rightarrow Y(1S)\gamma$

Direct production (CO/CS transitions)

Tevatron data, run II: prompt ψ(2S), Y(3S) Tevatron data, run I: J/ψ, Y(1S) [p_T spectrum only]

b-hadron decays

b-hadron decays into J/ψ

- * FONLL scheme: [Cacciari, Greco, Nason]
 - resummation of logarithms of p_T/m_b, with next-to-leading logarithmic accuracy, particularly relevant at the LHC
 - matching with the fixed order, exact NLO calculation for massive quarks
- * predictions based on non-perturbative inputs:
 - * gluon and light quark PDFs
 - b quark to H_b fragmentation (fitted to LEP data)
 - * H_b to J/psi branching ratio + decay spectrum

b-hadron decays into J/ψ (2)

* [Cacciari, Frixione, Mangano, Nason, Ridolfi]

• Good agreement with the data (no free parameter)

• Scale, mass and PDF uncertainties summed in quadrature

Prompt production

NRQCD factorization

The cross section for inclusive quarkonium production is expressed as a sum of products of short-distance coefficients and long-distance matrix elements

$$\sigma[\mathcal{Q}] = \sum_{n} \hat{\sigma}_{\Lambda}[Q\bar{Q}(n)] \langle \mathcal{O}^{\mathcal{Q}}(n) \rangle_{\Lambda}$$

SD coefficients

many recent works have been
devoted to improving their
accuracy, i.e. by computing higherorder corrections in α_s
→ reviewed in this talk

LD matrix elements

for the color-octet, no theoretical tool to constrain the LDME's other than the power counting rules in v

→ not much to say about recent progress (contrary to decays)

Fragmentation processes [Braaten & Yuan, 93]

- At large p_T, quarkonium production is dominated by fragmentation.
- Calculations of cross sections simplify in the fragmentation approximation

$$d\sigma[\mathcal{Q}+X] = \int_0^1 d\hat{\sigma}[i(p/z) + X, \mu] D_{i \to \mathcal{Q}}(z, \mu) + \mathcal{O}(m_Q/p_T)$$

$$D_{i\to\mathcal{Q}}(z,\mu) = F_{i\to\mathcal{Q}\bar{Q}(n)}^{\text{pert.}}(z,\mu,\Lambda)\langle \mathcal{O}^{\mathcal{Q}}(n)\rangle_{\Lambda}$$

The DGLAP evolution equation can be used to resum the terms (α_s log[p_T/m_Q])ⁿ

$$\mu \frac{\partial}{\partial \mu} D_{i \to \mathcal{Q}}(z, \mu) = \sum_{j} \int_{z}^{1} \frac{dy}{y} P_{i \to j}(z/y, \mu) D_{j \to \mathcal{Q}}(y, \mu)$$

 Drawback: in some cases, the correction terms of order m_Q/p_T may be enhanced by large coefficients such that the fragmentation approximation is not accurate in the p_T region of interest

Let us consider first the feed-down from excited quarkonium states

Feed-down from $\psi(2S)$:

- At the Tevatron, the p_T spectrum for pp→X+[ψ(2S)→J/ψππ] can be deduced from the experimental spectrum for pp→X+[ψ(2S)→μμ] and from Monte-Carlo simulation for the decay ψ(2S)→J/ψππ
- * The resulting J/ ψ polarization is not well known, since the polarization of $\psi(2S)$ has large uncertainties, both experimentally and theoretically
- In the past, the feed-down from ψ(2S) has been addressed by considering inclusive long-distance matrix elements, e.g.

$$\langle \mathcal{O}[n] \rangle_{\text{inc}}^{J/\psi} = \langle \mathcal{O}[n] \rangle^{J/\psi} + \sum_{H} B_{H \to J\psi} \langle \mathcal{O}[n] \rangle^{H}$$

but this does not take into account the kinematic effects associated to the decay $\psi(2S) \rightarrow J/\psi\pi\pi$

Feed-down from $\psi(2S)$:

- * Let us assume that ${}^{3}S_{1}{}^{[8]} \rightarrow \psi(2S)$ is the dominant transition at the LHC
- Let us decay the ψ(2S) into J/ψππ according to a uniform distribution in the ψ(2S) rest frame
- The curves dσ/dp_T[J/ψ, |y(J/ψ)|<2.1] and dσ/dp_T[ψ(2S), |y(ψ)|<2.1] deviate from each other at large p_T

Feed-down from P-wave: $pp \rightarrow [\chi_{cJ} \rightarrow J/\psi\gamma] + X$

Friday 19 February 2010

Comparison with Tevatron data

- Leading-order NRQCD prediction provides a good description of the Tevatron data (CO LDME is a free parameter)
- LHC data will allow to test the shape over a wider range in pT

Direct production

J/ψ , ψ (2S) direct production

Th. status of direct J/ ψ production at the Tevatron I: 9 years ago

J/ψ , ψ (2S) direct production

Th. status of direct J/ ψ production at the Tevatron I: 9 years ago

• LO + fragmentation colorsinglet channels undershoots the CDF data by more than an order of magnitude.

• Color-octet contributions fitted to the data describe well the shape in p_T, and the values of the CO LDME's agree with the power counting rules in v.

To be updated with recent progresses on α_s corrections to the SD coefficients

³S₁[8]

Open questions

At large p_T , the production is dominated by $g^* \rightarrow {}^3S_1{}^{[8]}$, which leads to transverse polarization in the c.m. helicity frame. This prediction may be affected by perturbative and non-perturbative corrections

α_s correction is partially known (results reviewed in the next slides) e.g: spin-symmetry breaking chromomagnetic interactions in the transition ${}^{3}S_{1}^{[8]} \rightarrow \psi$: only constrained by the counting rules in v

Color-octet channels (direct prod.)

α_s correction to color-octet transitions

 ³S₁^[8]: [Gong, Li, Wang; 08]
 NLO correction is small in the entire p_T range, very small correction to the polarization [also investigated in the frag. approx: Ma 95, Beneke & Rothstein 96, Braaten & Lee, 00].

- ¹S₀^[8]: [Gong, Li, Wang; 08]
 NLO correction is small at low pT, but increasingly important at large p_T, no correction to the polarization
- ³P_J^[8]: no complete calculation at NLO, unknown correction to the polarization

uncertainties at NLO: only the scale uncertainty on $\sigma[p_T>3 \text{ GeV}]$ has been analyzed (small variation)

α_s correction to color-octet transitions

 ³S₁^[8]: [Gong, Li, Wang; 08]
 NLO correction is small in the entire p_T range, very small correction to the polarization [also investigated in the frag. approx: Ma 95, Beneke & Rothstein 96, Braaten & Lee, 00].

Observation for the ${}^{3}S_{1}{}^{[8]}$ case: no effects of the large $log(p_{T}/m_{c})$ at high p_{T} ?

Fragmentation vs full FO calculation

 Let us use exactly the same input parameters and compare the two calculations (frag. vs FO).

α_s correction to the color-singlet transition

α_s correction to the color-singlet transition

New contribution at α_s⁴

Friday 19 February 2010

00000

0000

α_s correction to the color-singlet transition (2)

* The CS yield at next-to-leading order in α_s is still decreasing too fast in p_T (d σ /d $p_T^2 \sim 1/p_T^6$) in comparison with the ψ (2S) data

The associated channel ψ(2S)+cc has the correct shape (1/p⁴), but the overall normalization is small

Large correction may arise at order α_s⁵ because new channels with a different p_T scaling open up at that order. One of them is the gluon fragmentation g^{*}→³S₁^[1]

Gluon fragmentation into ³S₁[1]

The contribution from the channel g*→³S₁^[1]
 is known in the fragmentation approximation

[Braaten & Yuan; 93]

large contribution
 compared to the NLO
 yield at large pT

• small contribution compare to the data but ...

Gluon fragmentation into ${}^{3}S_{1}[1]$ (2)

• ... we need to be critical of the fragmentation approximation

In the case of $g^* \rightarrow {}^{3}S_{1}{}^{[1]}gg$, the rather large invariant mass of the fragmentation products may lead to substantial corrections to the fragmentation approximation at finite p_{T} . Also channels that contribute at $\alpha_{s}{}^{5}$ other than fragmentation topologies may give a large contribution at finite p_{T} .

Other important channels at α_s^5 ?

- In the region s>>ŝ, the perturbative expansion in α_s may contain large logarithms ln[1/x].
- The resummation of these logs results in the so-called noncollinear or unintegrated parton distributions F_i[x,k_T², μ²] that give probability of finding a parton of type i carrying the longitudinal momentum fraction x and transverse momentum k_T at the probing scale μ² [k_T factorization]
- With the k_T factorization, the leading-order prediction for production of ³S₁^[1] accounts for topologies that appear at order α_s⁵ in the collinear factorization [Baranov, Zotov]

Prediction in the k_T factorization approach

* J/ ψ production at the Tevatron, run I

- With the k_T factorization, the ³S₁^[1] p_T spectrum at LO is in better agreement with the data (compared to LO ³S₁^[1] prediction in the coll. fact.) but a large gap remains
- Large uncertainties associated with the unintegrated PDF (factor 2-3)
- In the c.m. helicity frame, the polar asymmetry parameter is predicted to be negative (longitudinal polarization)

A new approach to evaluate channels at α_s^5

[PA, Campbell, Lansberg, Maltoni, Tramontano, 2008] Take the whole set of tree-level diagrams for ${}^{3}S_{1}^{[1]} + 3$ jets. This set includes both gluon fragmentation and high-energy enhanced topologies

Б

- IR cutoff dependence, expected to disappear at large pt
- no resummation of $\log[m_c/p_T]$ or $\log[1/x]$
- large uncertainty on the normalization, the shape is rather stable
- opening gap as p_T increases

25

30

* Differential cross section in NRQCD are expanded in v, but in the case of J/ψ , $\psi(2S)$, v is not that small ... Different scenarios are a priori possible:

I. Truncation of $\sigma[\psi]$ to order v³ is a good approximation

In this case, there is no substantial contribution from color-octet transitions. This scenario is not excluded yet, since the large QCD corrections to the p_T spectrum associated with the color-singlet transition lead to very large theoretical uncertainties on $\sigma_1[{}^3S_1]$. More work is required to reduce these uncertainties.

* Differential cross section in NRQCD are expanded in v, but in the case of J/ψ , $\psi(2S)$, v is not that small ... Different scenarios are a priori possible:

II. v^3 contribution to $\sigma[\psi]$ is small (due to SD coefficient suppression), the series truncated at order v^7 is accurate.

In this case, the main contribution come from the color-octet transitions. The prediction of the polarization at this accuracy in v disagrees with the CDF data.

* Differential cross section in NRQCD are expanded in v, but in the case of J/ψ , $\psi(2S)$, v is not that small ... Different scenarios are a priori possible:

III. There are large contributions to $\sigma[\psi]$ beyond v^7

In this case, heavy-quark spin-symmetry breaking interactions makes the prediction of the polarization more intricate, and lead to (at least a partial) depolarization of the charmonium state. The cross section differential in p_T may still be described by the production of ${}^3S_1{}^{[8]}$ state at large p_T , as the corresponding short-distance coefficient is dominant.

* Differential cross section in NRQCD are expanded in v, but in the case of J/ψ , $\psi(2S)$, v is not that small ... Different scenarios are a priori possible:

III. There are large contributions to $\sigma[\psi]$ beyond v^7

In this case, heavy-quark spin-symmetry breaking interactions makes the prediction of the polarization more intricate, and lead to (at least a partial) depolarization of the charmonium state. The cross section differential in p_T may still be described by the production of ${}^3S_1{}^{[8]}$ state at large p_T , as the corresponding short-distance coefficient is dominant.

* Differential cross section in NRQCD are expanded in v, but in the case of J/ψ , $\psi(2S)$, v is not that small ... Different scenarios are a priori possible:

III. There are large contributions to $\sigma[\psi]$ beyond v^7

In this case, heavy-quark spin-symmetry breaking interactions makes the prediction of the polarization more intricate, and lead to (at least a partial) depolarization of the charmonium state. The cross section differential in p_T may still be described by the production of ${}^3S_1{}^{[8]}$ state at large p_T , as the corresponding short-distance coefficient is dominant.

> what happens if we consider the production of Y states ? (expect a better behavior of the expansion in v)

Situation for Upsilon production (direct)

Y(1S) direct production

* smaller gap between
CS at NLO and the
data, increasing with p^T

* α_s⁵ channels may provide the missing contribution: the shape is in good agreement with the data, but large uncertainties on the normalization

[PA, Campbell, Lansberg, Maltoni, Tramontano, 2008]

Y vs ψ direct production

- For the Y direct production, the color-octet contributions are not needed to understand the cross section differential in p_T. Predictions at √s=7 TeV are ongoing.
- For J/ψ, ψ(2S) direct production, it is unclear what is the dominant transition in view of the current experimental data. New observables may help to understand the production mechanisms. Suggestions include both
 - * more exclusive signatures: $pp \rightarrow J/\psi + c\bar{c}$ $pp \rightarrow J/\psi + \gamma$ $pp \rightarrow J/\psi + J/\psi$

See talks by Fabio, Aafke, Jean-Philippe

 inclusive observables for which the theoretical and/or experimental uncertainties partly cancel (see next slide)

[From G. Bodwin]

Ratios of Cross Sections at Different Values of \sqrt{s}

- We may be able to disentangle the color-singlet and color-octet contributions by taking ratios of cross sections at different values of \sqrt{s} .
 - The largest theoretical uncertainties cancel.
 - In a given experiment, some systematic uncertainties may tend to cancel as well.
- R is the ratio of the direct production rate at $\sqrt{s} = 10$ TeV to the direct production rate at $\sqrt{s} = 1.96$ TeV.
 - R_1 is the color-singlet ratio of rates.
 - R_8 is the color-octet ratio of rates.
 - R^{Exp} is the experimental ratio of cross sections.
 - r^X is the ratio of the color-octet contribution to the color-singlet contribution at experiment X.
- If R_1 and R_8 are well separated, then we can use R^{Exp} to determine r^X .

$$R^{\text{Exp}} = \frac{\sigma_1^{\text{LHC}} + \sigma_8^{\text{LHC}}}{\sigma_1^{\text{Tev}} + \sigma_8^{\text{Tev}}} = \frac{R_1 + r^{\text{Tev}}R_8}{1 + r^{\text{Tev}}}, \quad \text{where} \quad r^{\text{Tev}} = \frac{\sigma_8^{\text{Tev}}}{\sigma_1^{\text{Tev}}} = \frac{R_1}{R_8}r^{\text{LHC}}.$$

• Then $r^{\text{Tev}} = (R^{\text{Exp}} - R_1)/(R_8 - R^{\text{Exp}})$ can be used to make predictions for the polarization.

Conclusion

- The different mechanisms for quarkonium production are not all understood with the same level of accuracy:
 - Charmonium feed-down from b-hadron decays seems well understood both at the perturbative and non-perturbative levels, and the predictions describe the data well without any free parameters.
 - NRQCD leading-order predictions for production of X_c states are in reasonable agreement with the Tevatron data, but need further experimental tests
 - The direct production of ψ and Y states suffers from large uncertainties, both at the perturbative and non-perturbative level. In particular, it is not clear what transition dominates the production.