LHC beam behaviour ...

(beam dynamics part, an attempt)

W. Herr

Beam behaviour in 2009 running

More precise: behaviour of stored (quiet) beam(s) (others are covered in separate presentations)

- Behaviour with one beam
- Behaviour with two beams
 - > Some beam-beam observations have been reported ..
 - > Do we already observe beam-beam effects?
- Any obstacles for high luminosity at 3.5 TeV ??

Single beam behaviour (at low intensity)

- Possible issues: life time and beam loss due to e.g.:
 - > Non-optimized parameters (tunes, chromaticity, coupling ...) systematic studies required
 - Non-linear imperfections at injection energy
 - **...**
 - > ???
- For LEP addicts: this is a hadron machine ...
 - Practically no damping
 - Noise!

Single beam behaviour

- Life time at injection without (much) optimization astonishingly good
 - Non-linear imperfections well understood and well corrected
 - Emittances smaller than expected
 - Non-linear imperfections not as relevant as believed
 - **>** ...

Tunes used

- Criginally: nominal tunes (0.28, 0.31) used
- > Appearance of vertical 'noise' around 0.31
- \triangleright Vertical tune lowered to ≈ 0.30
- > Horizontal and vertical tunes swapped
- Systematic study needed
- Good news: seems robust to tune changes
- Bad news: this will change!

Tune diagram and used tune

- Appearance of vertical 'noise' around 0.31
- Collisions will make it appear in both beams
- > Needs to be solved (potential obstacle)

Beam-beam effects in 2009 running

- Maximum 16 bunches per beam
- No bunch trains no crossing angle
 - No long range parasitic encounters
 - > Only head-on beam-beam effects

Beam-beam effects in 2009 running

- Remember: Head on beam-beam effects do not depend on energy and β^*
 - > Only on intensity and normalized emittance!
 - ightharpoonup With nominal emittance and $N \approx 2 \cdot 10^{10}$
 - Linear beam-beam parameter about $\xi \approx 0.0006$
 - $> cos(2\pi(Q + \Delta Q)) = cos(2\pi Q) 2\pi \xi sin(2\pi Q)$
 - For our tunes: $\Delta Q \approx \xi$ per IP
 - > Visible effects expected

Possible beam-beam effects in 2009 running

- Global tune change of the opposing beam by about $\Delta {f Q}~pprox~0.0006~\cdot {f N}_{ip}$
 - Tune of second beam not optimized, lower lifetime possible
 - These are typical tune changes done during $Sp\bar{p}S$ operation (and Tevatron ...)

Tune sensitivity with beam-beam

Dynamic aperture: tune scan with beam-beam for the LHC ...

Possible beam-beam effects in 2009 running

- Global tune change of the opposing beam by about $\Delta {f Q}~pprox~{f 0.0006} \cdot {f N}_{ip}$
 - Tune of second beam not optimized, lower lifetime possible
 - These are typical tune changes done during $Sp\bar{p}S$ operation
 - Lesson: we need the tune space for optimization!
- Loss of dynamic aperture due to non-linear beam-beam effects
 - > Very unlikely for this intensity, ... unless

Possible beam-beam effects in 2009 running

- Unequal beam sizes
 - Leads to bad lifetime of <u>one</u> beam (β -beat can become a problem)
 - Was a problem $Sp\bar{p}S$ and HERA operation
- Offset collisions
 - Leads to emittance growth and tune changes
- Noise (e.g. ripple, tune or orbit modulation, ...)
 - Leads to emittance growth and reduced life time

4 on 4 bunches

> Injection process 4 bunches on 4 bunches, without separation

4 on 4 bunches

> Dump of one beam improved lifetime of remaining beam

Filling with 4.5 on 4.5 bunches

4 on 4 bunches

- Do we expect anything like that?
 - Any second beam in the machine changes beam parameters!
 - Therefore: dumping one beam can (should!) make the other beam better <u>or</u> worse (depending on the potd) (this is not LEP)
- But: which one of the bunches ???

Are 4 on 4 bunches interesting?

- Accidentally yes, with the present filling scheme*):
 - > 2 bunches with 1, 1 bunch with 2, 1 bunch with 4 collisions
 - Ideal situation to study and observe beam-beam effects (but inefficient for physics)
 - ... provided we get close to nominal intensities!
 - ... provided we can measure individual bunches!
- *) equal number of collisions in all experiments

16 on 16 bunches

- > Injection of 16 on 16 bunches
- > Separation bump on (except IP8)

16 on 16 bunches

- Injection of 16 on 16 bunches
- In case of life time problems:
 - From which bunch?
 - > Remember:
 - 8 bunches see 1 collision!
 - 8 bunches see 3 collisions!
- Single bunch diagnostics needed to study details
 - Life time, available in LDB
 - Collision schedule and details (from web page)

- Do we expect it?
- When can it happen?
- Do we have to worry (e.g. emittance increase)?

- Do we expect it?
 - Sure, beam gives a dipolar (coherent) kick to the other beam, see e.g. W.Herr, CERN-SL/91-34 (1991)
 - **Depends on intensity**
 - Amplitude small

- When can it happen?
 - When the beams are colliding (head on)
 - (Few) long range interactions to small for a visible effect
 - Only reproducible when beams are colliding well

- Do we have to worry?
 - When we have stable (quiet) beams no
 - When the beams are moving (ramp, squeeze) yes
- Therefore:
 - Separate the beams unless you really want collisions (especially for higher intensities, i.e. above $2 3 \cdot 10^{10}$ p/bunch)
 - > Separate the beams for measurements (unless you measure Beam-Beam-Transfer-Function, e.g. see RHIC)

Beam-beam effects

- Do we have coherent beam-beam effects?
 - > Additional peaks have been reported
 - Tune change much too small to distinguish coherent modes
 - > Tune spread not yet dominated by beam-beam interaction

Beam-beam effects

- Do we have beam-beam effects? YES (thank God!)
- Do we have beam-beam problems? NO

Filling with 16 on 16 bunches

Filling with 16 on 16 bunches

- Observations:
 - > Spread of intensities well within limit
 - Hope for the same for higher intensities and larger number of bunches
- → Might want some display of bunch intensities

"Multi-bunch" filling

- Setting up of injection very easy even for rather unsymmetric scheme
- Data shown extracted from logging data base and processed
 - > Offset by one slot and some ghost data in next slot
 - > Fully sufficient for data analysis and online model applications
- Procedures very efficient and allow optimized filling schemes (web page in preparation)

Towards high luminosity at 3.5 TeV

- Eventually higher intensity and more bunches
 - > Requires single bunch measurements
 - Good control of basic parameters, including correction of β -beating (potential obstacle)
- Issues:
 - Total stored energy (machine protection)
 - \triangleright Aperture (minimum β^*)
 - Number of bunches and crossing angle (long range effects)
- → Possible scenarios: later