

Magnet

TT RICH1 VELO

ECAL/HCAL

RICH2 Tracker

Muon

A few highlights from LHCb

thanks to the outstanding start-up LHC performance

ECAL reconstructs *π*⁰ signal

Very first data : 23 November 2009, No B-field

The masses of the reconstructed K_s and Λ in agreement with the PDG values

Tracking without VELO

Tracking detectors were well calibrated at the start-up !

The masses of the reconstructed K_s and Λ in agreement with the PDG values

Using full tracking power, including VELO

Accuracy will be further improved after complete alignment

LHCD pp interaction vertex (VELO)

VELO can not be fully closed at \sqrt{s} = 900 GeV; each side is 15 mm away from the nominal position VELO moved in and out routinely; Kept 30 mm away during injection

Impact of LHCb dipole magnet: LHC beams cross at 2 mrad angle in horizontal plane as expected at the full magnetic field

RICH identifies charged kaons

Lнср гнср

Orange points – photon hits Continuous lines – expected distribution for each particle hypothesis (proton below threshold)

Detailed calibration and alignment in progress 8

MIP identification using ECAL, HCAL & Muon

(MIP = Minimum Ionizing Particle)

Converted photons reconstructed using Tracking and ECAL

 $M(e^+e^-) < 200 MeV/c^2$ for any pair of oppositely charged tracks

 π^{0} reconstructed using converted photons: $\pi^{0} \rightarrow \gamma e^{+}e^{-} (\gamma \rightarrow e^{+}e^{-})$

 $M(\pi^0) = 133 \text{ MeV/c}^2$ $\sigma = 15 \text{ MeV/c}^2$ (slightly worse than for $\pi^0 \rightarrow \gamma \gamma$ due to bremstrahlung)

Events with dimuons

Selection:

- Oppositely charged muon candidates from the interaction region
- Vertex quality & Muon identification
- There is a candidate with $M(\mu\mu) = 3035 \text{ MeV/c}^{2,}$ $P_{T1}= 2.2 \text{ GeV}, P_{T2}=1.2 \text{ GeV}$

Summary of 8 days LHCb data taking

Date	Fill	Activity	# triggers	# Beam gas	#Collision	VELO trigger	Trigger rate
			2x450 GeV				
08-déc	905	Collision	20373	4000	11200	18597	1.4Hz
09-déc	906	Collision	4186	1500	2680	3488	
11-déc	907	Collision	93197	36000	57000	83676	
11-déc	908	TAE	47579	16000	30000	45707	
11-déc	909	TAE	41538	20000	21500	41100	
12-déc	909	TAE	26203	12000	14000	21800	5Hz
12-déc	910	Collision	94978	34000	60000	87011	6Hz
12-déc	911	Collision	117883	50000	67000	102000	10Hz
1 2-déc	912	Collision	94380	14000	80000	82000	17Hz
			540317	187500	343360	485379	

Enough data to understand the detector performance in order to be in even better shape for physics at $\sqrt{s} = 7$ TeV

High Energy Fill at \sqrt{s} = 2.36 *TeV*

(still not sufficient to close VELO; looking forward for **stable beams** at higher energy)

ECAL Cluster multiplicity

No stable beam flag \rightarrow Si detectors were switched off

On: OT, RICH, CALO and MUON

~30k events reconstructed

Very Efficient Data Processing

• Two copies of raw data are made

- One copy at CERN
- One copy distributed over tier1 sites
- Reconstruction automatically triggered by presence of new raw data file
 - DST typically available for physics analysis within one hour of file closed at the pit
 - Dominated by migration time to mass storage (longer wait for small files)
 - Reconstruction jobs last a few minutes (small files, low multiplicity events). Design is 24 hours
- 2 Reprocessings of full dataset
 - Completed on the grid in <2 hours

CERN site busy with user analysis

Thanks to the team effort the LHCb detector works very well ! We are ready for the Long Physics Run in 2010

