Minimal Super Conformal Technicolor

Stefano Di Chiara

M. Antola, SD, F. Sannino, K. Tuominen: arXiv:1001.2040

CP³ - Origins

Particle Physics & Origin of Mass

Planck 2010, CERN

Low Energy Theory

Standard Model:

Minimal viable modelFine tuning

Supersymmetry

$$\tilde{f}\left(\tilde{f}\right) = -\tilde{\lambda}_{f} N(\tilde{f}) \int \frac{d^{4}k}{(2\pi)^{4}} \frac{2}{k^{2} - m_{\tilde{f}}^{2}} + \dots$$

$$N(\tilde{f})=N(f),\ \lambda_f^2=-\tilde{\lambda}_f \ \Rightarrow \ {\rm No} \ {\rm quadratic} \ {\rm term} \ {\rm in} \ \Lambda_{UV}$$

S. Di Chiara

Planck 2010

Technicolor

 $SU(N)_{TC}$ strong interaction responsible for techni-fermion EWSB condensate $\langle \bar{T}_L T_R \rangle = \Lambda_{TC}^3$.

SM fermion masses generated by $SU(N_{ETC})$ interaction which breaks down to $SU(N)_{TC}$:

Minimal Walking Technicolor

TC-fermions in the $SU(2)_{TC}$ adjoint rep.: a = 1, 2, 3;

$$Q_L^a = \begin{pmatrix} U_L^a \\ D_L^a \end{pmatrix}, \ U_R^a, \ D_R^a$$

Heavy leptons to cancel Witten anomaly

$$L_L = \left(\begin{array}{c} N_L \\ E_L \end{array}\right), \ N_R, \ E_R$$

Sannino, Tuominen '04; Dietrich, Sannino, Tuominen '05

Planck 2010

S. Di Chiara

Anomalies Cancellation

Gauge anomalies cancel for hypercharge assignment

$$Y(Q_L) = \frac{y}{2}, \qquad Y(U_R, D_R) = \left(\frac{y+1}{2}, \frac{y-1}{2}\right),$$
$$Y(L_L) = -3\frac{y}{2}, \quad Y(N_R, E_R) = \left(\frac{-3y+1}{2}, \frac{-3y-1}{2}\right)$$

Fermion masses through strong ETC interaction, or, for $y = 1, \dots$

Belyaev, Foadi, Frandsen, Jarvinen, Sannino, Pukhov '08

S. Di Chiara

Planck 2010

From MWT to N=4 SUSY

MWT Minimal S-partners N=1 Multiplets N=4 G_{μ} G_{μ} V \bar{D}_R

 \bar{U}_R U_L D_L

 Φ_3 Φ_1 Φ_2

MSCT - States

	Superfield	$\mathrm{SU}(2)_{\mathrm{TC}}$	$\mathrm{SU}(3)_{\mathrm{c}}$	${ m SU}(2)_{ m L}$	$\mathrm{U}(1)_{\mathrm{Y}}$
$\mathcal{N}=4$	Φ_L	Adj	1		1/2
	Φ_3	Adj	1	1	-1
	V	Adj	1	1	0
Lepton Fa	$_{_{{\cal A}^{ m th}}} \Lambda_L$	1	1		-3/2
	$_{ m mily}^{4} N$	1	1	1	1
	E	1	1	1	2
	H	1	1		1/2
	H'	1	1		-1/2

Antola, SD, Sannino, Tuominen '10

MSCT - Superpotential

- Spectrum: techni- and extra lepton-superfields + MSSM superfields
- Conformality broken by gauge and Yukawa couplings

$$P_{TC} = -\frac{g_{TC}}{3\sqrt{2}} \epsilon_{ijk} \epsilon^{abc} \Phi^a_i \Phi^b_j \Phi^c_k + y_U \epsilon_{ij3} \Phi^a_i H_j \Phi^a_3 + y_N \epsilon_{ij3} \Lambda_i H_j N + y_E \epsilon_{ij3} \Lambda_i H'_j E.$$

We also add soft SUSY breaking terms.

Motivations

- $< \tilde{H} > \neq 0$ can be induced dynamically through Yukawa couplings
- Interpolates between Higgs and dynamical EWSB
- Natural, complete ETC theory
- Possibility to study landscape of theories

Perturbative MSCT

To generate masses for D_L^a and SM fermions:

$$<\tilde{D}_L^a>=v_{TC}^a, <\tilde{H}>=v_H s_\beta, <\tilde{H}'>=v_H c_\beta$$

 $SU(2)_{TC} \times SU(2)_L \times U(1)_Y \to U(1)_{EM} \times U(1)_{TC}$

Gauge boson squared masses:

$$\begin{split} m_Z^2 &= \frac{1}{4} \left(g_L^2 + g_Y^2 \right) \left(v_{TC}^2 + v_H^2 \right), \\ m_{W^{\pm}}^2 &= \frac{1}{4} g_L^2 \left(v_{TC}^2 + v_H^2 \right), \\ m_{G_{TC}^{\pm 1}}^2 &= g_{TC}^2 v_{TC}^2 \end{split}$$

Photon γ and TC-photon G_{TC}^0 stay massless.

S. Di Chiara

Scalars

From the previous results it follows, at tree level:

$$\alpha S = \alpha T = 0$$

Scalar masses (tree level): CP-even: $m_{h_0^0}^2 = 0$,

$$m_{h_{1,2}^0}^2 = \frac{1}{2} \left(m_{A_1^0}^2 + m_Z^2 \mp \sqrt{\left(m_{A_1^0}^2 - m_Z^2 \right)^2 + 4m_{A_1^0}^2 m_B^2 s_{2\beta}^2} \right);$$

$$\mathrm{CP}-\mathrm{odd}: m_{A_0^0}^2=0,\ m_{A_1^0}^2=2\frac{b}{s_{2\beta}};\ m_B^2=\frac{g_L^2+g_Y^2}{4}v_H^2;$$

S. Di Chiara

Scalars

From the previous results it follows, at tree level:

$$\alpha S = \alpha T = 0$$

Scalar masses (tree level): CP-even: $m_{h_0^0}^2 = 0$,

$$m_{h_{1,2}^0}^2 = \frac{1}{2} \left(m_{A_1^0}^2 + m_Z^2 \mp \sqrt{\left(m_{A_1^0}^2 - m_Z^2 \right)^2 + 4m_{A_1^0}^2 m_B^2 s_{2\beta}^2} \right);$$

$$CP - odd: m_{A_0^0}^2 = 0, \ m_{A_1^0}^2 = 2\frac{b}{s_{2\beta}}; \ m_B^2 = \frac{g_L^2 + g_Y^2}{4}v_H^2;$$

Two massless scalars!

I-Loop Masses

Effective 1-loop potential:

$$\Delta V_1 = \frac{1}{64\pi^2} \sum_j (-1)^{2j} (2j+1) \operatorname{Tr} \left[\mathcal{M}_j^4 \left(\log \frac{\mathcal{M}_j^2}{\mu_r^2} - \frac{3}{2} \right) \right]$$

- GB massless at 1-loop (as expected)
- h_0^0 and A_0^0 massive at 1-loop

Pheno Constraints

•
$$m_{\chi^{\pm}} > 94 \text{ GeV}, m_{\chi^0} > 46 \text{ GeV},$$

 $\sqrt{v_{TC}^2 + v_H^2} = 246 \text{ GeV}$

- minimum eigenvalue leading principal submatrix of $|\mathcal{M}_{\chi}|^2 \geq \text{lightest } m_{\chi}^2$

- $M_{\tilde{W}} > 63 \text{ GeV}, 41 \text{ GeV} > M_{\tilde{B}} > 13 \text{ GeV}$
- $v_{TC} > 156 \text{ GeV}, v_H < 190 \text{ GeV}$

moreover $m_E = m_t / \tan \beta > 94 \text{ GeV} (\mathcal{Q}(E) = 2e)$

Review of Particle Physics '09

 \Rightarrow

Yukawa Couplings

From previous results and $m_t = 173$ GeV (shaded area excluded):

Perturbativity @ LHC

For $y_t = 1.5$, $y_E = 2.1$ MSCT perturbative up to 7 TeV: (lower to higher at 100 GeV) y_E , y_t , y_U , y_N

Spectrum @ LHC

A random scan of the parameter space ($y_t = 1.5, y_E = 2.1$) maximizing the lightest m_{χ} produces

• fermions:
$$m_{\chi^0_0} = 33 \text{ GeV}, \ m_{\chi^\pm_0} = 98 \text{ GeV}$$

• scalars (1-loop):
$$m_{h_0^0} = 36 \text{ GeV}, \ m_{A_0^0} = 32 \text{ GeV}$$

In the not-excluded parameter space: $m_{\chi^0_0} \le 41~{
m GeV}$

Viable spectrum for $y_t = 2.3, y_E = 2.4 (\Lambda = 400 \text{ Gev!})$

Spectrum @ LHC

A random scan of the parameter space ($y_t = 1.5, y_E = 2.1$) maximizing the lightest m_{χ} produces

• fermions:
$$m_{\chi_0^0} = 33 \text{ GeV}, \ m_{\chi_0^\pm} = 98 \text{ GeV}$$

• scalars (1-loop):
$$m_{h_0^0} = 36 \text{ GeV}, \ m_{A_0^0} = 32 \text{ GeV}$$

In the not-excluded parameter space: $m_{\chi^0_0} \le 41~{
m GeV}$

Viable spectrum for $y_t = 2.3, y_E = 2.4 (\Lambda = 400 \text{ Gev!})$

MSCT requires strong interaction to be possibly viable at LHC

Summary

- MWT extended by $\mathcal{N}=4$ SUSY sector to give mass to fermions in a natural way
- Conformality broken by gauge and Yukawa couplings
- EWSB can be both Higgs and dynamical: experiment determines which is favored
- MSCT requires strong interaction to be possibly viable at LHC

Backup Slides

MSSM

No s-particles observed \Rightarrow SUSY softly broken Model: $\mathcal{L}_{MSSM} = \mathcal{L}_{SUSY} + \mathcal{L}_{soft}$

Dynamical EWSB

For a strong interaction binding a $\bar{q}q$ pair

$$\bar{q}\gamma_{\mu}\gamma_{5}\frac{\sigma^{a}}{2}q \to f_{\pi}\partial_{\mu}\pi^{a}$$

Through the coupling to $\bar{q}q$ the W^{\pm} and Z acquire masses

$$\frac{g^{\mu\nu}}{p^2} \rightarrow \frac{g^{\mu\nu}}{p^2 - \left(gf_\pi/2\right)^2} =$$

Fermion Masses & EWSB

TC-Neutralinos

$$\bar{m}_{\chi^0_{TC}} = \{ M_{\tilde{D}}, \frac{1}{2} \left(\sqrt{M_{\tilde{D}}^2 + 4g_{TC}^2 v_{TC}^2} \mp M_{\tilde{D}} \right) \}$$

TC-gaugino (right-handed neutrino) D_R^3 can be very light (no Z coupling)

RG Equations

Gauge couplings g_s , g_L , g_Y do not unify:

Viable Spectrum

Large Yukawa couplings to Higgs bosons needed to obtain viable spectrum: $y_t = 2.3, y_E = 2.4$.

Random scan of the parameter space maximizing the lightest m_{χ} produces

• fermions:
$$m_{\chi_0^0} = 47 \text{ GeV}, \ m_{\chi_0^\pm} = 96 \text{ GeV}$$

• scalars (1-loop): $m_{h_0^0} = 95 \text{ GeV}, \ m_{A_0^0} = 37 \text{ GeV}$

Couplings diverge already at 400 GeV.