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Motivation

• Higgs mass unstable against radiative corrections
(hierarchy problem, fine tuning)

• Higgs has not been detected

• not a single elementary scalar is known

• some guidance: superconductivity: Higgs dof composite

• most of the mass is of dynamical origin

• Higgs potential: only mass scale on Lagrangian level



More guidance

Standard model 
without Higgs sector

Gedankenexperiment:
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Abbildung 4: Schematische Darstellung des Minimal-
Walking-Technicolor-Modells [24]. Neben den im
Standard Modell vorhandenen Teilchen sind die
Techniquarks U und D sowie die zur Vermeidung ei-
ner Wittenanomalie eingeführten Leptonen N und E
aufgeführt. Die Staffelung der Quarks und der Tech-
niquarks steht für deren drei Farb- beziehungsweise
Technifarbkopien. •

chen Eichbosonen. Die verbleibenden sechs sind
drei Paare von Technibaryonen und ihren Anti-
teilchen.

Da die adjungierte Darstellung der SU(2)
dreidimensional ist, transformiert sich eine un-
gerade zusätzliche Zahl von Fermionen unter der
elektroschwachen SU(2)L, was, wie bereits dis-
kutiert, zu einer Witten-Anomalie führte. Sie
wird im Fall von Minimal Walking Technicolor
durch die Hinzunahme einer Familie von Lepto-
nen vermieden (Siehe Abbildung 4.).

Die Forderung nach der Abwesenheit von
Eichanomalien fixiert dementsprechend die Hy-
perladungszuordnung zu diesen Fermionen bis
auf einen kontinuierlichen Parameter. Nachfol-
gend werden drei spezielle Zuordnungen disku-
tiert: Zum einen kann die Hyperladungszuord-
nung wie in einer Familie des Standardmodells
vorgenommen werden (I), da es sich hier um ei-
ne vollständige Familie von Fermionen handelt,
deren eine Hälfte, die Technifermionen, sich un-
ter einer dreidimensionalen Darstellung transfor-
mieren [Die Quarks des Standardmodells trans-
formieren sich auch unter einer dreidimensiona-
len Darstellung, der fundamentalen Darstellung
der SU(3) der Quantenchromodynamik.]. Zum
anderen gibt es eine Zuordnung, bei der die An-
omalien für die Techniquarks und die Leptonen
getrennt verschwinden (II). In diesem Fall haben
die beiden Techniflavour die elektrischen Ladun-
gen -1/2 und +1/2. Gleiches gilt für die Lepto-
nen. Als drittes Beispiel soll eine Hyperladungs-
zuordnung dienen, bei der alle elementaren Fer-

mionen ganzzahlige elektrische Ladungen tragen
(III); konkret 0 und +1 für die Techniquarks und
-1 und -2 für die Leptonen.

Abbildung 5 zeigt den Vergleich der für die-
se Szenarien berechneten Werte für den S- und
den T -Parameter mit den experimentell be-
stimmten Werten [25, 26]. (Der T -Parameter
ist ein weiterer obliquer Parameter, der Bei-
träge zur Brechung der Isospinsymmetrie er-
fasst.) Der Beitrag der Techniquarks wird da-
bei konservativ durch den störungstheoretischen
abgeschätzt. Ein Vergleich obliquer Parameter
findet immer in Bezug auf eine Standardmodell-
referenz mit vorgegebener Higgs- und Topquark-
masse statt. Entgegen der üblichen Annahme,
dass der skalare Partner der Technipionen, der
dem Higgs entspricht, vergleichsweise schwer ist
(einige hundert GeV), ist dies für quasikonfor-
me Technicolormodelle nicht notwendigerweise
der Fall. Vielmehr könnte er in Minimal Wal-
king Technicolor 150 GeV leicht sein [1, 2, 27].
Für diesen Referenzwert der Masse haben die
für Minimal Walking Technicolor berechneten
Werte signifikanten Überlapp mit dem 68%-
Konfidenzbereich des neueren Fits an die Da-
ten [26], der keine NuTeV-Daten berücksichtigt.
Dabei wird der oblique U -Parameter bei null
festgehalten, was konsistent mit den im Mo-
dell gefundenen Werten ist. (Der U -Parameter
kann als Ableitung des T -Parameters gese-
hen werden und liefert hier keine neuen Be-
schränkungen.) Die Überschneidung des 68%-
Konfidenzbereiches mit den berechneten Werten
ergibt für die Leptonen einen bevorzugten Mas-
senunterschied von etwa einer Z-Bosonenmasse
vor [2].

!!!: Ursachen für Unterschiede in den Plots?
Andere Plots? QM?

D. Next-to-Minimal Walking Technicolor

Das als Next-to-Minimal Walking Tech-
nicolor bezeichnete Modell basiert auf zwei
Techniflavors, die sich unter der zwei-index-
symmetrischen Darstellung der SU(3) transfor-
mieren. Diese ist sechsdimensional, entspricht
also einer geraden Zahl zusätzlicher Fermio-
nen, die sich unter der SU(2)L transformie-

fπ︸︷︷︸
O(102MeV)

!→ Λew︸︷︷︸
O(102GeV)

π± !→ W±
L

π0 !→ Z0
L

G = GTC × SU(3)QCD × SU(2)Y × U(1)Y
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the phenomenology of the MSSM.
The least understood aspect of the MSSM concerns the breaking of supersymmetry. A general

parametrization of this (necessary) phenomenon introduces more than 100 free parameters in the
model. Fortunately not all of these parameters will be relevant for a given problem or process, at
least not in leading order in perturbation theory. Nevertheless, it is of interest to look for schemes
that attempt to reduce the number of free parameters. The most popular such scheme is (loosely)
based on the extension of global supersymmetry to its local version, supergravity, and is hence
known as “minimal supergravity” or mSUGRA. This model is attractive not only because of its
economy and resulting predictive power, but also because it leads to a dynamical explanation (as
opposed to a mere parametrization) of electroweak symmetry breaking. This will be discussed in
Sec. 4d. I will in conclude Sec. 5 by briefly mentioning some areas of active research.

2. Quadratic Divergencies

This section deals with the problem of quadratic divergencies in the SM, and an explicit calculation
is performed to illustrate how the introduction of new fields with judicioulsy chosen couplings can
solve this problem. In order to appreciate the “bad” quantum behaviour of the scalar sector of the
SM, let us first briefly review some corrections in QED, the best understood ingredient of the SM.

The examples studied will all be two–point functions (inverse propagators) at vanishing external
momentum, computed at one–loop level. The calculations will therefore be quite simple, yet they
suffice to illustrate the problem. Roughly speaking, the computed quantity corresponds to the mass
parameters appearing in the Lagrangian; since I will assume vanishing external momentum, this
will not be the on–shell (pole) mass, but it is easy to see that the difference between these two
quantities can at most involve logarithmic divergencies (due to wave function renormalization).

e−

e+

γ γ

Fig. 1: The photon self–energy diagram in QED.

Let us first investigate the photon’s two–point function, which receives contributions due to the
electron loop diagram of Fig. 1:

πµν
γγ (0) = −

∫ d4k

(2π)4
tr

[

(−ieγµ)
i

k/ − me
(−ieγν)

i

k/ − me

]

= −4e2
∫ d4k

(2π)4

2kµkν − gµν (k2 − m2
e)

(k2 − m2
e)

2

= 0. (1)

The fact that the integral in eq.(1) vanishes is manifest only in a regularization scheme that preserves
gauge invariance, e.g. dimensional regularization. On a deeper level, this result is the consequence
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]
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[∫ gETC

gTC
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]
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Fig. 12.2: Left Panel: The black shaded parabolic area corresponds to the accessible range of S and T for the extra
neutrino and extra electron for masses from mZ to 10mZ for the model of ref [10]. The perturbative estimate for
the contribution to S from techniquarks equals 1/2π. The ellipse is the 90% confidence level contour for the global
fit to the electroweak precision data with U kept at 0. The contour is for the reference Higgs mass of mH = 150
GeV. Right Panel: Here the plot is obtained with a larger value of the hypercharge choice, according to which one
of the two fermions is doubly charged and the other is singly charged under the electromagnetic interactions.

electroweak symmetry breaking [45–48]. This may happen due to the fact that the top quark is very
heavy and hence strongly coupled to the electroweak symmetry breaking sector. Unfortunately the top-
quark condensation mechanism per se seems to yield a too large top mass [49]. This problem can be
addressed by re-introducing a technicolor theory [27]. One has also to invent a new strongly interacting
theory coupling to the third generation of quarks and an additional strongly coupled U(1) forbidding the
formation of the bottom condensate. In this model one predicts the existence of topgluons, i.e. a massive
color octet of vectors coupling mostly to the third generation. Due to the presence of the U(1) interaction
one predicts also the presence of a topcolor Z ′ particle.

Another promising idea is the top-seesaw model [6,50] in which the electroweak symmetry is bro-
ken thanks to the topcolor dynamics augmented with a seesaw mechanism involving an extra vectorlike
quark, χ. The Higgs boson is composite, resulting from a I = 1/2 condensate of a left-handed top quark
and a right-handed state of the new isosinglet quark. With the condensate mass scale at ∼ 600 GeV, the
vev of the Higgs field is at the right scale for electroweak symmetry breaking (EWSB) and the correct
physical top mass will derive from the diagonalization of the mass matrix.

A summary of direct experimental limits on the existence of technicolor particles, as well as other
resonances predicted in dynamical electroweak breaking scenarios can be found in [3, 51].

Most of the searches for technicolor resonances, have been performed in the context of a “multi-
scale” technicolor model [36,37] in which “walking” of αTC is achieved by the presence of a large num-
ber of technifermions, which are copies of the fundamental representation of the technicolor gauge group,
or which belong to a few higher representations, or both. It is then expected, in a “technicolor straw man
model”(TCSM) [52–54], that the low energy phenomenology will be determined by the lowest-lying
bound states associated to the lightest technifermion family doublet. The lowest technicolor scale could
be of a few hundred GeV’s, and therefore these bound states, the isovector technipions π±,0

T and tech-
nirho ρ±,0 and the isoscalar π′

T and techniomega ωT , would have a good chance of being seen at the
Tevatron and should certainly be accessible at the LHC. A limited number of parameters is assumed in
the TCSM model: (i) NTC , the number of technicolors of the SU(NTC) group, (ii) ND, the number of
technifermion families (iii) χ, the mixing angle between the longitudinal vector bosons and the physical
technipions, (iv) Q = QU + QD, the sum of the electric charges of the technifermions, (v) mV ∼ mA,
the mass parameters that control the strength of the technivector decay to a technipion and a transversely
polarized electroweak boson (e.g., ωT → π0

T + γ), (vi) |ερω|, a mixing amplitude between ρ0
T and ωT ,

and (vii) mρT ,mωT ,mπT , the masses of the vector resonances and of the technipions.
At LEP, in technicolor searches based on the TCSM [55–58] the processes considered were:

e+e− → ρ0
T ,ωT → π+

T π−
T → bq̄b̄q′, as well as final states π0

T γ → bb̄γ and WπT . As a result of
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corresponds to a second branch in the relative plot shown
in Fig. 3. For our model, the expected mass of the com-
posite Higgs is 150 GeV [1]. Let it be noted that, even if it
was as heavy as 1 TeV there would still be an overlap
between the measurements and the values attainable in our
model. This can also be achieved in top-seesaw models
[19]. Regarding Fig. 1, we can also remark how the models
with different numbers of technicolors considered in [1]
would appear with respect to the precision data. The mod-
els with techniflavors in the two-index antisymmetric rep-
resentation are excluded by the precision data [1,7]. In the
model with two technifermion flavors in the two-index
symmetric representation of the gauge group SUT!3" (de-
noted by S!3; 2" in [1]) there is no Witten anomaly and
hence no need to introduce the new fermion generation.
The contribution of the techniquarks yields S # 0:32 and
T # 0. Taking into account the possible reduction of 20%
leads to S # 0:25, a value close to the tip of the shaded
parabola in Fig. 1.

Let us then set aside the other variants and continue to
analyze in detail the S!2; 2"-model. Translating the overlap
depicted in the perturbative versions of Figs. 1 and 2 to
values of the lepton masses favored at the 68% level of
confidence leads to the plots in Fig. 3. For technical rea-
sons, the exact intersection of the parabolic shape with the
interior of the ellipse is not presented but instead with the
interior of a polygon characterized by: $0:1< S% T <
%0:5, $0:15< S$ T <%0:025, and S < 0:22. In all in-
vestigated cases there exists a branch for which the more
negatively charged lepton (m2) is about one Z-boson mass
(mZ) heavier than the more positively charged lepton (m1).
The mass gap of approximately one mZ is mostly dictated
by the limits in the (S$ T)-direction. The second branch

with m1 >m2 is usually forbidden by the limits imposed
on S. This does not affect the situation for the fractionally
charged leptons (II), which yield no variation in S as a
function of their masses. Incorporating nonperturbative
corrections leads to a second branch for not too small
masses in the standard model–like situation (I). This cor-
responds to the overlap of the ellipse with the right half of
the black area in Fig. 1(b).

III. SUMMARY

In light of the fact that new relevant electroweak preci-
sion data have appeared very recently we have investigated
the consequences for the technicolor theory with two tech-
niflavors in the two-index symmetric representation of
SUT!2" and one additional lepton generation presented in
[1]. We found that the range of masses of the leptons,
consistent with the new data at the 68% level of confidence
[13], is much larger than with the previous data at the 90%
level of confidence [5]. The comparison of our theory with
the new precision measurements further strengthens our
claim that certain technicolor theories are directly compat-
ible with precision measurements.
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FIG. 3. The shaded areas depict the range for the masses of the new leptons which are accessible due to the oblique corrections in
accordance with the electroweak precision data without taking into account nonperturbative corrections. m1 (m2) is the mass, in units
of mZ, for the lepton with the higher (lower) charge. The black stripes do not correspond exactly to the overlap of the parabolic area
with the 68% ellipse in the !S; T"-plane from [13] but with a polygonal area defined by $0:1< S% T <%0:5, $0:15< S$ T <
%0:025, and S < 0:22. After taking into account nonperturbative corrections subfigures (b) and (c) stay qualitatively the same, while
for not too small masses (a) has a second branch with m1 <m2 like in (c). This corresponds to the overlap of the ellipse with the right
branch of the parabolic area in Fig. 1(b) as opposed to Fig. 1(a).
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{UD̄,DŪ, (UŪ −DD̄)/
√

2} #→ {π+, π−, π0} #→ {W+
L , W−

L , Z0
L}

Nambu-Goldstone modes

SU(4)→ SO(4)

SU(2)L × SU(2)R → SU(2)V

additionally
UU, DD, UD

ŪŪ , D̄D̄, ŪD̄
UG, DG, ŪG, D̄G → Dark matter

NMWT

MWT

Minimal walking technicolour

&

DDD & M. Järvinen 0901.3528

m2
π = O(m2

Z)



• Coupling to electroweak gauge group

• Standard model fermion masses

• Vacuum alignment

• Technipion masses

• Mass of dark matter candidates

• Techniquark masses

• Four-fermion interactions

Real-life technicolour

Take into account:
DDD 0908.1364 & 1005.1324

Fukano & Sannino 1005.3340



Quasiconformal window6

FIG. 4: Massive fermions, γ = 2: Quasiconformal window
for SU(N) gauge theories with fermions in the (from top to
bottom) fundamental (black; straight, rising), two-index anti-
symmetric (blue; curved, falling), two-index symmetric (red)
or adjoint (green; straight, horizontal) representation of the
gauge group. Above the solid curves asymptotic freedom is
lost. The dotted lines show the lower bound for the conformal
window according to the rainbow-ladder-approximation to the
Dyson–Schwinger-equations. For massless fermions the lower
bound is depicted by the lower dashed curve; for fermions
with x = −4 (µ = 4m), by the upper dashed curve.

The first mass term above, however, breaks the elec-
troweak symmetry, while the second does not; it breaks
the SU(4) to SO(4) ! SU(2)L×SU(2)R. Consequently,
it contributes to the masses of those Nambu–Goldstone-
modes, which link left- with right-fields, that is, the
modes with non-zero technibaryon number. Apart from
a direct application to dynamical electroweak symmetry
breaking, for which the electroweak symmetry must be
unbroken before the chiral condensate is formed, the in-
vestigation of the impact of an explicit mass term of Lm-
type is interesting per se as well as for quantum chromo-
dynamics, and natural for a study in the framework of
lattice field theory.

For techniquarks in a pseudoreal representation of the
technicolour gauge group, terms which break the SU(4)
flavour symmetry to SU(2)L × SU(2)R are needed to
stabilise the vacuum. The motivation for studying ad-
ditional mass terms of Lλ-type for real representations
(and yet another motivation for studying it for pseudo-
real representations) is to control the amount of walking
or even avoid conformality of an otherwise promising can-
didate [27]. (In fact, it appears to be interesting to com-
pare the implications from our mass-dependent all-order
β-function with results from lattice studies, which is an
active field in the context of walking technicolour theories

FIG. 5: Lower bounds for the (quasi)conformal window,
two flavours, adjoint representation, SU(2): ladder-rainbow-
approximation (dotted); γ = 1 massless (horizontal straight
line, dash-dotted), massive (curve, dash-dotted); γ = 2
massless (horizontal straight line, dashed), massive (curve,
dashed). Above the solid line asymptotic freedom is lost. The
zone in which the flavours are gradually switched off, spans
four orders of magnitude.

[27, 28].) For this purpose, we do not even have to in-
crease the value of the mass parameter λ beyond its value
when used to make the extra Nambu–Goldstone-modes
sufficiently massive: The extended-technicolour-induced
term is of dynamical origin. Thus, arguing based on a
Gell-Mann–Oakes–Renner relation,

m2
πf2

π = 2λ〈QQ̄〉, (26)

where mπ = O(few 0.1TeV) is the extended technicolour
contribution to the mass of the corresponding pions, fπ =
O(few TeV) their decay constant and 〈QQ̄〉 = O(TeV3)
the related techniquark condensate, results in λ being of
O(TeV) as well. This is where also the technicolour scale
is situated. Hence, an interference of related threshold ef-
fects with the technicolour phase transition appears nat-
ural. Thus, the extended technicolour might affect the
technicolour phase transition.

On the other hand, the dynamically generated techni-
quark mass in the Lm channel can be estimated to be
[31]

Σ(0) ≈ 2πFπ/
√

dR, (27)

where for technicolour models with two techniflavours
Fπ = Λew = 246GeV. dR is the dimension of the rep-
resentation of the technicolour gauge group with respect
to which the techniquarks transform. Hence, Σ(0) is also
of O(TeV) and it seems likely that also the critical value
of the coupling α∗ is influenced by the presence of Lλ.

SD
γ=1, m=0

γ=1

AF
γ=2

γ=2, m=0

DDD 0908.1364

=-μ2/(4m2)

MWT



Different types of walking
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Conclusion

Dynamical electroweak symmetry breaking by 
quasiconformal technicolor models is feasible.

• quasiconformal dynamics (walking)

• oblique parameters       small matter content

• high masses for Nambu-Goldstone modes

• stability of the vacuum alignment

⇒ ✓
✓

✓
✓

⇒



Outlook

• Collider phenomenology
   Matti Järvinen
      Walking technicolour at colliders

• Mass generation mechanism
   Stefano Di Chiara
      Minimal super conformal technicolour
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Light composite Higgs

The composite Higgs can be much lighter, i.e., O(100GeV), 
than expected from scaling up QCD.

DDD, Sannino & Tuominen hep-ph/0505059
DDD & Sannino hep-ph/0611341

Doff, Natale & Rodrigues da Silva 0802.1898
Doff & Natale 0902.2379, 

0905.2981, 
0912.1003



Minimal Walking Technicolour

can easily reduce our model to the case of an SU!2"L #
SU!2"R chiral symmetry. For certain values of the cou-
plings of the low energy effective theory—before impos-
ing the generalized WSRs—one recovers the BESS
models [26].

Walking dynamics differs from the QCD-like running
behavior because of a nearby infrared (IR) fixed point
which dominates the low energy dynamics. The physics
of the fixed point theory per se is very interesting. If one
assumes the existence of a theory with an actual IR fixed
point coupled to a nonconformal theory (such as the stan-
dard model), in the way described recently by Georgi
[27,28], this leads to interesting phenomenology [29–
32]. The presence of a conformal symmetry signals itself
in a way that formally resembles the production of a non-
integer number of massless invisible particles, where the
noninteger number is nothing but the scale dimension of
the conformal-sector operator, which is weakly coupled to
the standard model operators. We expect, however, follow-
ing Ref. [33], that the coupling with the standard model
fields will push the unparticle sector away from the IR
fixed point. If this is the case, in practice one will observe a
walking dynamics in certain sectors of the theory, such as,
for example, the electroweak symmetry breaking sector.
Our model should then be a reasonable description of a
near conformal dynamics associated to this sector.

The rather comprehensive model we are going to de-
velop in the following sections has been conceived in a way
to ease its implementation on computer programs aiming
to provide interesting experimental signals for the physics
at colliders.

II. THE UNDERLYING LAGRANGIAN FOR
MINIMAL WALKING TECHNICOLOR

The new dynamical sector we consider, which underlies
the Higgs mechanism, is an SU(2) technicolor gauge the-
ory with two adjoint technifermions [2]. The theory is
asymptotically free if the number of flavors Nf is less
than 2.75.

The two adjoint fermions may be written as

 Qa
L $ Ua

Da

! "

L
; Ua

R; D
a
R; a $ 1; 2; 3; (1)

with a being the adjoint color index of SU(2). The left-
handed fields are arranged in three doublets of the SU!2"L
weak interactions in the standard fashion. The condensate
is h !UU% !DDi which correctly breaks the electroweak
symmetry.

The model as described so far suffers from the Witten
topological anomaly [34]. However, this can easily be
solved by adding a new weakly charged fermionic doublet
which is a technicolor singlet [8]. Schematically,

 LL $ N
E

! "

L
; NR; ER: (2)

In general, the gauge anomalies cancel using the following
generic hypercharge assignment:

 Y!QL" $
y
2
; Y!UR; DR" $

!
y% 1

2
;
y& 1

2

"
; (3)

 Y!LL" $ &3
y
2
; Y!NR; ER" $

!&3y% 1

2
;
&3y& 1

2

"
;

(4)

where the parameter y can take any real value [8]. In our
notation the electric charge is Q $ T3 % Y, where T3 is the
weak isospin generator. One recovers the SM hypercharge
assignment for y $ 1=3.

To discuss the symmetry properties of the theory, it is
convenient to use the Weyl basis for the fermions and
arrange them in the following vector transforming accord-
ing to the fundamental representation of SU(4):

 Q $
UL

DL

&i!2U'
R

&i!2D'
R

0
BBB@

1
CCCA; (5)

where UL and DL are the left-handed techniup and techni-
down, respectively, and UR and DR are the corresponding
right-handed particles. Assuming the standard breaking to
the maximal diagonal subgroup, the SU(4) symmetry spon-
taneously breaks to SO(4). Such a breaking is driven by the
following condensate:

 hQ"
i Q

#
j $"#E

iji $& 2h !URUL % !DRDLi; (6)

where the indices i, j $ 1; . . . ; 4 denote the components of
the tetraplet of Q, and the Greek indices indicate the
ordinary spin. The matrix E is a 4# 4 matrix defined in
terms of the 2-dimensional unit matrix as

 E $ 0 1
1 0

! "
: (7)

We follow the notation of Wess and Bagger [35] $"# $
&i!2

"# and hU"
LUR

'#$"#i $ &h !URULi. A similar expres-
sion holds for the D techniquark. The above condensate is
invariant under an SO(4) symmetry. This leaves us with
nine broken generators with associated Goldstone bosons.

Replacing the Higgs sector of the SM with the MWT the
Lagrangian now reads
 

LH ! &1
4F

a
%&F a%& % i !QL'%D%QL % i !UR'%D%UR

% i !DR'%D%DR % i !LL'%D%LL % i !NR'%D%NR

% i !ER'%D%ER (8)

with the technicolor field strength F a
%& $ @%Aa

& &
@&Aa

% % gTC$abcAb
%Ac

&, a, b, c $ 1; . . . ; 3. For the
left-handed techniquarks the covariant derivative is

FOADI, FRANDSEN, RYTTOV, AND SANNINO PHYSICAL REVIEW D 76, 055005 (2007)

055005-2

can easily reduce our model to the case of an SU!2"L #
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sion holds for the D techniquark. The above condensate is
invariant under an SO(4) symmetry. This leaves us with
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Replacing the Higgs sector of the SM with the MWT the
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with the technicolor field strength F a
%& $ @%Aa

& &
@&Aa

% % gTC$abcAb
%Ac

&, a, b, c $ 1; . . . ; 3. For the
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 D!Qa
L !

!
"ac@! " gTCAb

!#abc # i
g
2

~W! $ ~$"ac

# ig0
y
2
B!"ac

"
Qc

L: (9)

A! are the technigauge bosons, W! are the gauge bosons
associated to SU%2&L, and B! is the gauge boson associated
to the hypercharge. $a are the Pauli matrices and #abc is the
fully antisymmetric symbol. In the case of right-handed
techniquarks, the third term containing the weak interac-
tions disappears and the hypercharge y=2 has to be re-
placed according to whether it is an up or down
techniquark. For the left-handed leptons, the second term
containing the technicolor interactions disappears and y=2
changes to #3y=2. Only the last term is present for the
right-handed leptons with an appropriate hypercharge
assignment.

III. LOW ENERGY THEORY FOR MWT

We construct the effective theory for MWT including
composite scalars and vector bosons, their self-
interactions, and their interactions with the electroweak
gauge fields and the standard model fermions.

A. Scalar sector

The relevant effective theory for the Higgs sector at the
electroweak scale consists, in our model, of a composite
Higgs and its pseudoscalar partner, as well as nine pseu-
doscalar Goldstone bosons and their scalar partners. These
can be assembled in the matrix

 M !
#
%" i!

2
"

$$$
2

p
%i"a " ~"a&Xa

%
E; (10)

which transforms under the full SU(4) group according to

 M ! uMuT; with u 2 SU%4&: (11)

The Xa’s, a ! 1; . . . ; 9 are the generators of the SU(4)
group which do not leave the vacuum expectation value
(VEV) of M invariant

 hMi ! v
2
E: (12)

Note that the notation used is such that % is a scalar while
the "a’s are pseudoscalars. It is convenient to separate the
15 generators of SU(4) into the six that leave the vacuum
invariant, Sa, and the remaining nine that do not, Xa. Then
the Sa generators of the SO(4) subgroup satisfy the relation

 SaE" ESaT ! 0; with a ! 1; . . . ; 6; (13)

so that uEuT ! E, for u 2 SO%4&. The explicit realization
of the generators is shown in Appendix A.

Notice that it is necessary to introduce the ‘‘tilde’’ fields
in the matrix M when realizing the global symmetry line-
arly. In fact, it can easily be shown that the matrix

 M !
!
%
2
" i

$$$
2

p
"aXa

"
E

is not invariant in form under a general SU(4) transforma-
tion, but only under transformations of the unbroken SO(4)
subgroup. This is in contrast to the case of an SU%2&L '
SU%2&R chiral group, whose minimal form involves a scalar
Higgs and three pseudoscalar Goldstone bosons only, but is
similar to the case of an SU%3&L ' SU%3&R chiral group.
With the tilde fields included, the matrix M is invariant in
form under U%4& ( SU%4& ' U%1&A, rather than just SU(4).
However, the U%1&A axial symmetry is anomalous, and is
therefore broken at the quantum level.

The connection between the composite scalars and the
underlying techniquarks can be derived from the trans-
formation properties under SU(4), by observing that the
elements of the matrix M transform like techniquark bi-
linears:

 Mij )Q&
i Q

'
j "&' with i; j ! 1; . . . ; 4: (14)

Using this expression, and the basis matrices given in
Appendix A, the scalar fields can be related to the wave
functions of the techniquark bound states. This gives the
following charge eigenstates:

 v"H(%) #UU" #DD; !) i% #U(5U" #D(5D&;
A0 ( ~"3) #UU# #DD; "0 ("3) i% #U(5U# #D(5D&;

A" (
~"1# i ~"2

$$$
2

p ) #DU; "" ("1# i"2

$$$
2

p ) i #D(5U;

A# (
~"1" i ~"2

$$$
2

p ) #UD; "# ("1" i"2

$$$
2

p ) i #U(5D;

(15)

for the technimesons, and

 "UU ( "4 " i"5 ""6 " i"7

2
)UTCU;

"DD ( "4 " i"5 #"6 # i"7

2
)DTCD;

"UD ( "8 " i"9

$$$
2

p )UTCD;

~"UU (
~"4 " i ~"5 " ~"6 " i ~"7

2
) iUTC(5U;

~"DD (
~"4 " i ~"5 # ~"6 # i ~"7

2
) iDTC(5D;

~"UD (
~"8 " i ~"9

$$$
2

p ) iUTC(5D;

(16)

for the technibaryons, where U ( %UL; UR&T and D (
%DL; DR&T are Dirac technifermions, and C is the charge
conjugation matrix, needed to form Lorentz-invariant ob-
jects. To these technibaryon charge eigenstates we must
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techniquarks, the third term containing the weak interac-
tions disappears and the hypercharge y=2 has to be re-
placed according to whether it is an up or down
techniquark. For the left-handed leptons, the second term
containing the technicolor interactions disappears and y=2
changes to #3y=2. Only the last term is present for the
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assignment.

III. LOW ENERGY THEORY FOR MWT

We construct the effective theory for MWT including
composite scalars and vector bosons, their self-
interactions, and their interactions with the electroweak
gauge fields and the standard model fermions.

A. Scalar sector

The relevant effective theory for the Higgs sector at the
electroweak scale consists, in our model, of a composite
Higgs and its pseudoscalar partner, as well as nine pseu-
doscalar Goldstone bosons and their scalar partners. These
can be assembled in the matrix
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which transforms under the full SU(4) group according to
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The Xa’s, a ! 1; . . . ; 9 are the generators of the SU(4)
group which do not leave the vacuum expectation value
(VEV) of M invariant

 hMi ! v
2
E: (12)

Note that the notation used is such that % is a scalar while
the "a’s are pseudoscalars. It is convenient to separate the
15 generators of SU(4) into the six that leave the vacuum
invariant, Sa, and the remaining nine that do not, Xa. Then
the Sa generators of the SO(4) subgroup satisfy the relation

 SaE" ESaT ! 0; with a ! 1; . . . ; 6; (13)

so that uEuT ! E, for u 2 SO%4&. The explicit realization
of the generators is shown in Appendix A.

Notice that it is necessary to introduce the ‘‘tilde’’ fields
in the matrix M when realizing the global symmetry line-
arly. In fact, it can easily be shown that the matrix

 M !
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%
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is not invariant in form under a general SU(4) transforma-
tion, but only under transformations of the unbroken SO(4)
subgroup. This is in contrast to the case of an SU%2&L '
SU%2&R chiral group, whose minimal form involves a scalar
Higgs and three pseudoscalar Goldstone bosons only, but is
similar to the case of an SU%3&L ' SU%3&R chiral group.
With the tilde fields included, the matrix M is invariant in
form under U%4& ( SU%4& ' U%1&A, rather than just SU(4).
However, the U%1&A axial symmetry is anomalous, and is
therefore broken at the quantum level.

The connection between the composite scalars and the
underlying techniquarks can be derived from the trans-
formation properties under SU(4), by observing that the
elements of the matrix M transform like techniquark bi-
linears:

 Mij )Q&
i Q
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j "&' with i; j ! 1; . . . ; 4: (14)

Using this expression, and the basis matrices given in
Appendix A, the scalar fields can be related to the wave
functions of the techniquark bound states. This gives the
following charge eigenstates:
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for the technibaryons, where U ( %UL; UR&T and D (
%DL; DR&T are Dirac technifermions, and C is the charge
conjugation matrix, needed to form Lorentz-invariant ob-
jects. To these technibaryon charge eigenstates we must
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arly. In fact, it can easily be shown that the matrix
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SU%2&R chiral group, whose minimal form involves a scalar
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similar to the case of an SU%3&L ' SU%3&R chiral group.
With the tilde fields included, the matrix M is invariant in
form under U%4& ( SU%4& ' U%1&A, rather than just SU(4).
However, the U%1&A axial symmetry is anomalous, and is
therefore broken at the quantum level.

The connection between the composite scalars and the
underlying techniquarks can be derived from the trans-
formation properties under SU(4), by observing that the
elements of the matrix M transform like techniquark bi-
linears:
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for the technibaryons, where U ( %UL; UR&T and D (
%DL; DR&T are Dirac technifermions, and C is the charge
conjugation matrix, needed to form Lorentz-invariant ob-
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assignment.

III. LOW ENERGY THEORY FOR MWT

We construct the effective theory for MWT including
composite scalars and vector bosons, their self-
interactions, and their interactions with the electroweak
gauge fields and the standard model fermions.

A. Scalar sector

The relevant effective theory for the Higgs sector at the
electroweak scale consists, in our model, of a composite
Higgs and its pseudoscalar partner, as well as nine pseu-
doscalar Goldstone bosons and their scalar partners. These
can be assembled in the matrix

 M !
#
%" i!

2
"

$$$
2

p
%i"a " ~"a&Xa

%
E; (10)

which transforms under the full SU(4) group according to

 M ! uMuT; with u 2 SU%4&: (11)

The Xa’s, a ! 1; . . . ; 9 are the generators of the SU(4)
group which do not leave the vacuum expectation value
(VEV) of M invariant

 hMi ! v
2
E: (12)

Note that the notation used is such that % is a scalar while
the "a’s are pseudoscalars. It is convenient to separate the
15 generators of SU(4) into the six that leave the vacuum
invariant, Sa, and the remaining nine that do not, Xa. Then
the Sa generators of the SO(4) subgroup satisfy the relation

 SaE" ESaT ! 0; with a ! 1; . . . ; 6; (13)

so that uEuT ! E, for u 2 SO%4&. The explicit realization
of the generators is shown in Appendix A.

Notice that it is necessary to introduce the ‘‘tilde’’ fields
in the matrix M when realizing the global symmetry line-
arly. In fact, it can easily be shown that the matrix

 M !
!
%
2
" i

$$$
2

p
"aXa

"
E

is not invariant in form under a general SU(4) transforma-
tion, but only under transformations of the unbroken SO(4)
subgroup. This is in contrast to the case of an SU%2&L '
SU%2&R chiral group, whose minimal form involves a scalar
Higgs and three pseudoscalar Goldstone bosons only, but is
similar to the case of an SU%3&L ' SU%3&R chiral group.
With the tilde fields included, the matrix M is invariant in
form under U%4& ( SU%4& ' U%1&A, rather than just SU(4).
However, the U%1&A axial symmetry is anomalous, and is
therefore broken at the quantum level.

The connection between the composite scalars and the
underlying techniquarks can be derived from the trans-
formation properties under SU(4), by observing that the
elements of the matrix M transform like techniquark bi-
linears:

 Mij )Q&
i Q

'
j "&' with i; j ! 1; . . . ; 4: (14)

Using this expression, and the basis matrices given in
Appendix A, the scalar fields can be related to the wave
functions of the techniquark bound states. This gives the
following charge eigenstates:

 v"H(%) #UU" #DD; !) i% #U(5U" #D(5D&;
A0 ( ~"3) #UU# #DD; "0 ("3) i% #U(5U# #D(5D&;

A" (
~"1# i ~"2

$$$
2

p ) #DU; "" ("1# i"2

$$$
2

p ) i #D(5U;

A# (
~"1" i ~"2

$$$
2

p ) #UD; "# ("1" i"2

$$$
2

p ) i #U(5D;

(15)

for the technimesons, and

 "UU ( "4 " i"5 ""6 " i"7

2
)UTCU;

"DD ( "4 " i"5 #"6 # i"7

2
)DTCD;

"UD ( "8 " i"9

$$$
2

p )UTCD;

~"UU (
~"4 " i ~"5 " ~"6 " i ~"7

2
) iUTC(5U;

~"DD (
~"4 " i ~"5 # ~"6 # i ~"7

2
) iDTC(5D;

~"UD (
~"8 " i ~"9

$$$
2

p ) iUTC(5D;

(16)

for the technibaryons, where U ( %UL; UR&T and D (
%DL; DR&T are Dirac technifermions, and C is the charge
conjugation matrix, needed to form Lorentz-invariant ob-
jects. To these technibaryon charge eigenstates we must
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!#abc # i
g
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~W! $ ~$"ac
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y
2
B!"ac

"
Qc

L: (9)
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changes to #3y=2. Only the last term is present for the
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We construct the effective theory for MWT including
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interactions, and their interactions with the electroweak
gauge fields and the standard model fermions.
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The relevant effective theory for the Higgs sector at the
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The Xa’s, a ! 1; . . . ; 9 are the generators of the SU(4)
group which do not leave the vacuum expectation value
(VEV) of M invariant

 hMi ! v
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E: (12)

Note that the notation used is such that % is a scalar while
the "a’s are pseudoscalars. It is convenient to separate the
15 generators of SU(4) into the six that leave the vacuum
invariant, Sa, and the remaining nine that do not, Xa. Then
the Sa generators of the SO(4) subgroup satisfy the relation

 SaE" ESaT ! 0; with a ! 1; . . . ; 6; (13)

so that uEuT ! E, for u 2 SO%4&. The explicit realization
of the generators is shown in Appendix A.

Notice that it is necessary to introduce the ‘‘tilde’’ fields
in the matrix M when realizing the global symmetry line-
arly. In fact, it can easily be shown that the matrix

 M !
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is not invariant in form under a general SU(4) transforma-
tion, but only under transformations of the unbroken SO(4)
subgroup. This is in contrast to the case of an SU%2&L '
SU%2&R chiral group, whose minimal form involves a scalar
Higgs and three pseudoscalar Goldstone bosons only, but is
similar to the case of an SU%3&L ' SU%3&R chiral group.
With the tilde fields included, the matrix M is invariant in
form under U%4& ( SU%4& ' U%1&A, rather than just SU(4).
However, the U%1&A axial symmetry is anomalous, and is
therefore broken at the quantum level.

The connection between the composite scalars and the
underlying techniquarks can be derived from the trans-
formation properties under SU(4), by observing that the
elements of the matrix M transform like techniquark bi-
linears:

 Mij )Q&
i Q

'
j "&' with i; j ! 1; . . . ; 4: (14)

Using this expression, and the basis matrices given in
Appendix A, the scalar fields can be related to the wave
functions of the techniquark bound states. This gives the
following charge eigenstates:

 v"H(%) #UU" #DD; !) i% #U(5U" #D(5D&;
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for the technibaryons, where U ( %UL; UR&T and D (
%DL; DR&T are Dirac technifermions, and C is the charge
conjugation matrix, needed to form Lorentz-invariant ob-
jects. To these technibaryon charge eigenstates we must
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add the corresponding charge conjugate states (e.g.
!UU ! ! "U "U).

The electroweak subgroup can be embedded in SU(4), as
explained in detail in [36]. Here SO(4) acts as a vectorial
subgroup, in the sense that this is the diagonal subgroup to
which SU(4) is maximally broken. Based on this, we can
say that the generators Sa, with a ! 1, 2, 3, form a vecto-
rial SU(2) subgroup of SU(4), which is henceforth denoted
by SU"2#V, while S4 forms a U"1#V subgroup. The Sa

generators, with a ! 1; . . . ; 4, together with the Xa gener-
ators, with a ! 1, 2, 3, generate an SU"2#L $ SU"2#R $
U"1#V algebra. This is easily seen by changing generator
basis from "Sa; Xa# to "La; Ra#, where

 La % Sa & Xa
!!!
2

p !
!a
2 0
0 0

" #
;

' RaT % Sa ' Xa
!!!
2

p ! 0 0
0 ' !aT

2

" #
;

(17)

with a ! 1, 2, 3. The electroweak gauge group is then
obtained by gauging SU"2#L, and the U"1#Y subgroup of
SU"2#R $ U"1#V, where

 Y ! 'R3T &
!!!
2

p
YVS4; (18)

and YV is the U"1#V charge. For example, from Eqs. (3) and
(4) we see that YV ! y for the techniquarks, and YV !
'3y for the new leptons. As SU(4) spontaneously breaks to
SO(4), SU"2#L $ SU"2#R breaks to SU"2#V. As a conse-
quence, the electroweak symmetry breaks to U"1#Q, where

 Q !
!!!
2

p
S3 &

!!!
2

p
YVS4: (19)

Moreover, the SU"2#V group, being entirely contained in
the unbroken SO(4), acts as a custodial isospin, which
ensures that the " parameter is equal to one at tree level.

The electroweak covariant derivative for the M matrix is

 D#M ! @#M' ig(G#"y#M&MGT
#"y#); (20)

where

 gG#"YV# ! gWa
#La & g0B#Y

! gWa
#La & g0B#"'R3T &

!!!
2

p
YVS4#: (21)

Notice that in the last equation G#"YV# is written for a
general U"1#V charge YV, while in Eq. (20) we have to take
the U"1#V charge of the techniquarks, YV ! y, since these
are the constituents of the matrix M, as explicitly shown in
Eq. (14).

Three of the nine Goldstone bosons associated with the
broken generators become the longitudinal degrees of free-
dom of the massive weak gauge bosons, while the extra six
Goldstone bosons will acquire a mass due to extended
technicolor interactions (ETC) as well as the electroweak
interactions per se. Using a bottom up approach, we will
not commit to a specific ETC theory but limit ourself to
introduce the minimal low energy operators needed to

construct a phenomenologically viable theory. The new
Higgs Lagrangian is

 L Higgs ! 1
2 Tr(D#MD#My) 'V "M# &LETC; (22)

where the potential reads

 V "M# ! 'm2

2
Tr(MMy) & $

4
Tr(MMy)2

& $0 Tr(MMyMMy) ' 2$00(det"M#
& det"My#); (23)

and LETC contains all terms which are generated by the
ETC interactions, and not by the chiral symmetry breaking
sector. Notice that the determinant terms (which are re-
normalizable) explicitly break the U"1#A symmetry, and
give mass to #, which would otherwise be a massless
Goldstone boson. While the potential has a (spontaneously
broken) SU(4) global symmetry, the largest global sym-
metry of the kinetic term is SU"2#L $ U"1#R $ U"1#V
[where U"1#R is the !3 part of SU"2#R], and becomes
SU(4) in the g, g0 ! 0 limit. Under electroweak gauge
transformations, M transforms like

 M"x# ! u"x; y#M"x#uT"x; y#; (24)

where

 u"x;YV# ! exp(i%a"x#La & i&"x#"'R3T &
!!!
2

p
YVS4#);

(25)

and YV ! y. We explicitly break the SU(4) symmetry in
order to provide mass to the Goldstone bosons which are
not eaten by the weak gauge bosons. We, however, pre-
serve the full SU"2#L $ SU"2#R $ U"1#V subgroup of
SU(4), since breaking SU"2#R $ U"1#V to U"1#Y would
result in a potentially dangerous violation of the custodial
isospin symmetry. Assuming parity invariance we write

 L ETC ! m2
ETC

4
Tr(MBMyB&MMy) & * * * ; (26)

where the ellipses represent possible higher dimensional
operators, and B % 2

!!!
2

p
S4 commutes with the SU"2#L $

SU"2#R $ U"1#V generators.
The potential V "M# is SU(4) invariant. It produces a

VEV which parametrizes the techniquark condensate, and
spontaneously breaks SU(4) to SO(4). In terms of the
model parameters the VEV is

 v2 ! h'i2 ! m2

$& $0 ' $00 ; (27)

while the Higgs mass is

 M2
H ! 2m2: (28)

The linear combination $& $0 ' $00 corresponds to the
Higgs self-coupling in the SM. The three pseudoscalar
mesons !+, !0 correspond to the three massless
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add the corresponding charge conjugate states (e.g.
!UU ! ! "U "U).

The electroweak subgroup can be embedded in SU(4), as
explained in detail in [36]. Here SO(4) acts as a vectorial
subgroup, in the sense that this is the diagonal subgroup to
which SU(4) is maximally broken. Based on this, we can
say that the generators Sa, with a ! 1, 2, 3, form a vecto-
rial SU(2) subgroup of SU(4), which is henceforth denoted
by SU"2#V, while S4 forms a U"1#V subgroup. The Sa

generators, with a ! 1; . . . ; 4, together with the Xa gener-
ators, with a ! 1, 2, 3, generate an SU"2#L $ SU"2#R $
U"1#V algebra. This is easily seen by changing generator
basis from "Sa; Xa# to "La; Ra#, where

 La % Sa & Xa
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2

p !
!a
2 0
0 0

" #
;

' RaT % Sa ' Xa
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2

p ! 0 0
0 ' !aT

2

" #
;

(17)

with a ! 1, 2, 3. The electroweak gauge group is then
obtained by gauging SU"2#L, and the U"1#Y subgroup of
SU"2#R $ U"1#V, where

 Y ! 'R3T &
!!!
2

p
YVS4; (18)

and YV is the U"1#V charge. For example, from Eqs. (3) and
(4) we see that YV ! y for the techniquarks, and YV !
'3y for the new leptons. As SU(4) spontaneously breaks to
SO(4), SU"2#L $ SU"2#R breaks to SU"2#V. As a conse-
quence, the electroweak symmetry breaks to U"1#Q, where

 Q !
!!!
2

p
S3 &

!!!
2

p
YVS4: (19)

Moreover, the SU"2#V group, being entirely contained in
the unbroken SO(4), acts as a custodial isospin, which
ensures that the " parameter is equal to one at tree level.

The electroweak covariant derivative for the M matrix is

 D#M ! @#M' ig(G#"y#M&MGT
#"y#); (20)

where

 gG#"YV# ! gWa
#La & g0B#Y

! gWa
#La & g0B#"'R3T &
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2

p
YVS4#: (21)

Notice that in the last equation G#"YV# is written for a
general U"1#V charge YV, while in Eq. (20) we have to take
the U"1#V charge of the techniquarks, YV ! y, since these
are the constituents of the matrix M, as explicitly shown in
Eq. (14).

Three of the nine Goldstone bosons associated with the
broken generators become the longitudinal degrees of free-
dom of the massive weak gauge bosons, while the extra six
Goldstone bosons will acquire a mass due to extended
technicolor interactions (ETC) as well as the electroweak
interactions per se. Using a bottom up approach, we will
not commit to a specific ETC theory but limit ourself to
introduce the minimal low energy operators needed to

construct a phenomenologically viable theory. The new
Higgs Lagrangian is

 L Higgs ! 1
2 Tr(D#MD#My) 'V "M# &LETC; (22)

where the potential reads

 V "M# ! 'm2

2
Tr(MMy) & $

4
Tr(MMy)2

& $0 Tr(MMyMMy) ' 2$00(det"M#
& det"My#); (23)

and LETC contains all terms which are generated by the
ETC interactions, and not by the chiral symmetry breaking
sector. Notice that the determinant terms (which are re-
normalizable) explicitly break the U"1#A symmetry, and
give mass to #, which would otherwise be a massless
Goldstone boson. While the potential has a (spontaneously
broken) SU(4) global symmetry, the largest global sym-
metry of the kinetic term is SU"2#L $ U"1#R $ U"1#V
[where U"1#R is the !3 part of SU"2#R], and becomes
SU(4) in the g, g0 ! 0 limit. Under electroweak gauge
transformations, M transforms like

 M"x# ! u"x; y#M"x#uT"x; y#; (24)

where

 u"x;YV# ! exp(i%a"x#La & i&"x#"'R3T &
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2

p
YVS4#);

(25)

and YV ! y. We explicitly break the SU(4) symmetry in
order to provide mass to the Goldstone bosons which are
not eaten by the weak gauge bosons. We, however, pre-
serve the full SU"2#L $ SU"2#R $ U"1#V subgroup of
SU(4), since breaking SU"2#R $ U"1#V to U"1#Y would
result in a potentially dangerous violation of the custodial
isospin symmetry. Assuming parity invariance we write

 L ETC ! m2
ETC

4
Tr(MBMyB&MMy) & * * * ; (26)

where the ellipses represent possible higher dimensional
operators, and B % 2
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2

p
S4 commutes with the SU"2#L $

SU"2#R $ U"1#V generators.
The potential V "M# is SU(4) invariant. It produces a

VEV which parametrizes the techniquark condensate, and
spontaneously breaks SU(4) to SO(4). In terms of the
model parameters the VEV is

 v2 ! h'i2 ! m2

$& $0 ' $00 ; (27)

while the Higgs mass is

 M2
H ! 2m2: (28)

The linear combination $& $0 ' $00 corresponds to the
Higgs self-coupling in the SM. The three pseudoscalar
mesons !+, !0 correspond to the three massless
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add the corresponding charge conjugate states (e.g.
!UU ! ! "U "U).

The electroweak subgroup can be embedded in SU(4), as
explained in detail in [36]. Here SO(4) acts as a vectorial
subgroup, in the sense that this is the diagonal subgroup to
which SU(4) is maximally broken. Based on this, we can
say that the generators Sa, with a ! 1, 2, 3, form a vecto-
rial SU(2) subgroup of SU(4), which is henceforth denoted
by SU"2#V, while S4 forms a U"1#V subgroup. The Sa

generators, with a ! 1; . . . ; 4, together with the Xa gener-
ators, with a ! 1, 2, 3, generate an SU"2#L $ SU"2#R $
U"1#V algebra. This is easily seen by changing generator
basis from "Sa; Xa# to "La; Ra#, where

 La % Sa & Xa
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2
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!a
2 0
0 0

" #
;

' RaT % Sa ' Xa
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2

p ! 0 0
0 ' !aT
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" #
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with a ! 1, 2, 3. The electroweak gauge group is then
obtained by gauging SU"2#L, and the U"1#Y subgroup of
SU"2#R $ U"1#V, where

 Y ! 'R3T &
!!!
2

p
YVS4; (18)

and YV is the U"1#V charge. For example, from Eqs. (3) and
(4) we see that YV ! y for the techniquarks, and YV !
'3y for the new leptons. As SU(4) spontaneously breaks to
SO(4), SU"2#L $ SU"2#R breaks to SU"2#V. As a conse-
quence, the electroweak symmetry breaks to U"1#Q, where

 Q !
!!!
2

p
S3 &

!!!
2

p
YVS4: (19)

Moreover, the SU"2#V group, being entirely contained in
the unbroken SO(4), acts as a custodial isospin, which
ensures that the " parameter is equal to one at tree level.

The electroweak covariant derivative for the M matrix is

 D#M ! @#M' ig(G#"y#M&MGT
#"y#); (20)

where

 gG#"YV# ! gWa
#La & g0B#Y

! gWa
#La & g0B#"'R3T &

!!!
2

p
YVS4#: (21)

Notice that in the last equation G#"YV# is written for a
general U"1#V charge YV, while in Eq. (20) we have to take
the U"1#V charge of the techniquarks, YV ! y, since these
are the constituents of the matrix M, as explicitly shown in
Eq. (14).

Three of the nine Goldstone bosons associated with the
broken generators become the longitudinal degrees of free-
dom of the massive weak gauge bosons, while the extra six
Goldstone bosons will acquire a mass due to extended
technicolor interactions (ETC) as well as the electroweak
interactions per se. Using a bottom up approach, we will
not commit to a specific ETC theory but limit ourself to
introduce the minimal low energy operators needed to

construct a phenomenologically viable theory. The new
Higgs Lagrangian is

 L Higgs ! 1
2 Tr(D#MD#My) 'V "M# &LETC; (22)

where the potential reads

 V "M# ! 'm2

2
Tr(MMy) & $

4
Tr(MMy)2

& $0 Tr(MMyMMy) ' 2$00(det"M#
& det"My#); (23)

and LETC contains all terms which are generated by the
ETC interactions, and not by the chiral symmetry breaking
sector. Notice that the determinant terms (which are re-
normalizable) explicitly break the U"1#A symmetry, and
give mass to #, which would otherwise be a massless
Goldstone boson. While the potential has a (spontaneously
broken) SU(4) global symmetry, the largest global sym-
metry of the kinetic term is SU"2#L $ U"1#R $ U"1#V
[where U"1#R is the !3 part of SU"2#R], and becomes
SU(4) in the g, g0 ! 0 limit. Under electroweak gauge
transformations, M transforms like

 M"x# ! u"x; y#M"x#uT"x; y#; (24)

where

 u"x;YV# ! exp(i%a"x#La & i&"x#"'R3T &
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p
YVS4#);

(25)

and YV ! y. We explicitly break the SU(4) symmetry in
order to provide mass to the Goldstone bosons which are
not eaten by the weak gauge bosons. We, however, pre-
serve the full SU"2#L $ SU"2#R $ U"1#V subgroup of
SU(4), since breaking SU"2#R $ U"1#V to U"1#Y would
result in a potentially dangerous violation of the custodial
isospin symmetry. Assuming parity invariance we write

 L ETC ! m2
ETC

4
Tr(MBMyB&MMy) & * * * ; (26)

where the ellipses represent possible higher dimensional
operators, and B % 2
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p
S4 commutes with the SU"2#L $

SU"2#R $ U"1#V generators.
The potential V "M# is SU(4) invariant. It produces a

VEV which parametrizes the techniquark condensate, and
spontaneously breaks SU(4) to SO(4). In terms of the
model parameters the VEV is

 v2 ! h'i2 ! m2

$& $0 ' $00 ; (27)

while the Higgs mass is

 M2
H ! 2m2: (28)

The linear combination $& $0 ' $00 corresponds to the
Higgs self-coupling in the SM. The three pseudoscalar
mesons !+, !0 correspond to the three massless
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say that the generators Sa, with a ! 1, 2, 3, form a vecto-
rial SU(2) subgroup of SU(4), which is henceforth denoted
by SU"2#V, while S4 forms a U"1#V subgroup. The Sa

generators, with a ! 1; . . . ; 4, together with the Xa gener-
ators, with a ! 1, 2, 3, generate an SU"2#L $ SU"2#R $
U"1#V algebra. This is easily seen by changing generator
basis from "Sa; Xa# to "La; Ra#, where

 La % Sa & Xa
!!!
2

p !
!a
2 0
0 0

" #
;

' RaT % Sa ' Xa
!!!
2

p ! 0 0
0 ' !aT

2

" #
;

(17)

with a ! 1, 2, 3. The electroweak gauge group is then
obtained by gauging SU"2#L, and the U"1#Y subgroup of
SU"2#R $ U"1#V, where

 Y ! 'R3T &
!!!
2

p
YVS4; (18)

and YV is the U"1#V charge. For example, from Eqs. (3) and
(4) we see that YV ! y for the techniquarks, and YV !
'3y for the new leptons. As SU(4) spontaneously breaks to
SO(4), SU"2#L $ SU"2#R breaks to SU"2#V. As a conse-
quence, the electroweak symmetry breaks to U"1#Q, where

 Q !
!!!
2

p
S3 &

!!!
2

p
YVS4: (19)

Moreover, the SU"2#V group, being entirely contained in
the unbroken SO(4), acts as a custodial isospin, which
ensures that the " parameter is equal to one at tree level.

The electroweak covariant derivative for the M matrix is

 D#M ! @#M' ig(G#"y#M&MGT
#"y#); (20)

where

 gG#"YV# ! gWa
#La & g0B#Y

! gWa
#La & g0B#"'R3T &

!!!
2

p
YVS4#: (21)

Notice that in the last equation G#"YV# is written for a
general U"1#V charge YV, while in Eq. (20) we have to take
the U"1#V charge of the techniquarks, YV ! y, since these
are the constituents of the matrix M, as explicitly shown in
Eq. (14).

Three of the nine Goldstone bosons associated with the
broken generators become the longitudinal degrees of free-
dom of the massive weak gauge bosons, while the extra six
Goldstone bosons will acquire a mass due to extended
technicolor interactions (ETC) as well as the electroweak
interactions per se. Using a bottom up approach, we will
not commit to a specific ETC theory but limit ourself to
introduce the minimal low energy operators needed to

construct a phenomenologically viable theory. The new
Higgs Lagrangian is

 L Higgs ! 1
2 Tr(D#MD#My) 'V "M# &LETC; (22)

where the potential reads

 V "M# ! 'm2

2
Tr(MMy) & $

4
Tr(MMy)2

& $0 Tr(MMyMMy) ' 2$00(det"M#
& det"My#); (23)

and LETC contains all terms which are generated by the
ETC interactions, and not by the chiral symmetry breaking
sector. Notice that the determinant terms (which are re-
normalizable) explicitly break the U"1#A symmetry, and
give mass to #, which would otherwise be a massless
Goldstone boson. While the potential has a (spontaneously
broken) SU(4) global symmetry, the largest global sym-
metry of the kinetic term is SU"2#L $ U"1#R $ U"1#V
[where U"1#R is the !3 part of SU"2#R], and becomes
SU(4) in the g, g0 ! 0 limit. Under electroweak gauge
transformations, M transforms like

 M"x# ! u"x; y#M"x#uT"x; y#; (24)

where

 u"x;YV# ! exp(i%a"x#La & i&"x#"'R3T &
!!!
2

p
YVS4#);

(25)

and YV ! y. We explicitly break the SU(4) symmetry in
order to provide mass to the Goldstone bosons which are
not eaten by the weak gauge bosons. We, however, pre-
serve the full SU"2#L $ SU"2#R $ U"1#V subgroup of
SU(4), since breaking SU"2#R $ U"1#V to U"1#Y would
result in a potentially dangerous violation of the custodial
isospin symmetry. Assuming parity invariance we write

 L ETC ! m2
ETC

4
Tr(MBMyB&MMy) & * * * ; (26)

where the ellipses represent possible higher dimensional
operators, and B % 2

!!!
2

p
S4 commutes with the SU"2#L $

SU"2#R $ U"1#V generators.
The potential V "M# is SU(4) invariant. It produces a

VEV which parametrizes the techniquark condensate, and
spontaneously breaks SU(4) to SO(4). In terms of the
model parameters the VEV is

 v2 ! h'i2 ! m2

$& $0 ' $00 ; (27)

while the Higgs mass is

 M2
H ! 2m2: (28)

The linear combination $& $0 ' $00 corresponds to the
Higgs self-coupling in the SM. The three pseudoscalar
mesons !+, !0 correspond to the three massless
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Figure 4. Left: The results of the model and the 90% confidence limit contour allowed by all
electroweak data for mref = 115GeV. The light red diamonds are excluded by direct observatons
while the black triangles are not. Right: Black triangles show the points consistent with the 90%
S-T confidence limit, blue circles correspond to triangles in the left panel that are within the larger
ellipse and the red diamonds to triangles even farther out. Lighter points are also farther out.

Figure 5. Left: The FCNC constraints on parameters mπ and v on points satisfying direct search
and S-T 90% confidence limit. Light red diamonds are unallowed, while black triangles are allowed.
Right: The allowed values of the condensates f and v after taking all constraints into account.

Higgs sector. The presence of the new scalar allows for the generation of mass of any fermion

without necessarily invoking new strong dynamics, a la ETC, for which satisfactory models

are hard to construct [81]. Of course, there is a price for this, i.e. the Yukawa couplings

remain devoid of a more fundamental explanation.

We constrained the parameter space of the model using the LEP direct search limits,

FCNC results and the electroweak precision tests. We find that the model is viable and

can be seen as the stepping stone for a well defined extension of the SM featuring a com-

plete solution to both the origin of spontaneous breaking the electroweak symmetry and

the mass of any other SM fermion. The model can be seen also as an effective low energy

description of a more natural model aimed at explaining the mass of the ordinary fermions.

At this point one can embark in a serious study of possible signatures at colliders as done,

for example, in [20].
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