Introduction, motivation Fermion Condensate Model Conclusion, Outlook

Fermion Condensate Model of Electroweak Interactions

Gábor Cynolter

HAS ORG Theoretical Physics Research Group, ELTE Budapest with Endre Lendvai and George Pócsik

Planck 2010. CERN, June 2, 2010.

G. Cynolter FCM

Permion Condensate Model
 Gap equations, masses, mixing
 Phenomenology

(日) (圖) (토) (토) (토)

BSM - Solutions to the Hierarchy Problem

Standard Model is incomplete

- theory problems & phenomenology indications

$$\delta M_H^2 \sim -rac{3\,G_F}{2\sqrt{2}\pi^2}m_{top}^2\Lambda^2 \sim -\left(0.2\Lambda
ight)^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣

Solutions:

- Supersymmetry, perturbative cancellations Fermion-boson symmety (softly broken) $\Lambda \sim m_{susy} \simeq m_{susy} - m$
- Dynamical symmetry breaking technicolor-like models, composite Higgs
- Extra dimensions

Apparent Planck scale large, geometrical solution

• Little-Higgs

Higgs: (Pseudo GB), B-B and F-F cancellation

LHC - most important tasks

- Reveal the mechanism of EWSB Find the Higgs, if it exists!
- Search for new physics at the TeV scale
- Oark matter candidates
- Anything unexpected

・ロト ・四ト ・ヨト ・ヨト

The new physics is unknown, model dependent constraints

 \implies Important to check alternative scenarios.

Dynamical Symmetry Breaking w/ Vector-like Fermions

- Low energy non-renormalizable, effective model Without elementary scalar
- New fermions are non-chiral, differs from technicolor
- Dynamical condensate breaks EW symmetry. Mixing between doublet & singlet rep's is essential.
- Higgs: composite state.

G. C., E. Lendvai and G. Pócsik, EPJ C46 (2006)
G. C. ,E. Lendvai, J.Phys. G34 (2007), EPJ C58 (2008).
G. Cynolter and E. Lendvai, arXiv:1002.4490 [hep-ph]

New fermions

SM elementary Higgs (sector) replaced by new vector-like fermions

$$\begin{pmatrix} \Phi^{(+)} \\ \Phi^{(0)} \end{pmatrix} \rightarrow \begin{pmatrix} \Psi_S, & T = Y = 0 \text{, singlet} \\ \Psi_D = \begin{pmatrix} \Psi_D^+ \\ \Psi_D^0 \end{pmatrix}, & T = \frac{1}{2}, Y = 1, SU_L(2) \text{ doublet}$$

Non-chiral representations \Rightarrow anomaly free Similar extra fermions investigated MSSM neutralino sector,

- R. Barbieri, L.J. Hall, V.S. Rychkov: Improved naturalness..PRD74 (2006)
- P.J. Fox, L.J. Hall, M. Papucci,..., Dark matter... JHEP 0711
- M. Cirelli, A. Strumia,...Minimal dark matter, Nucl. Phys. B **753** (2006)
- 📔 Rakhi Mahbubani, Leonardo Senatore, Phys. Rev. D73: 043510 (2006).
- F. D'Eramo,: Dark Matter + Higgs phys., Phys.Rev.D76:083522 (2007).
 - and many other ...

$$L_{\Psi} = i\overline{\Psi}_{D}D_{\mu}\gamma^{\mu}\Psi_{D} + i\overline{\Psi}_{S}\partial_{\mu}\gamma^{\mu}\Psi_{S} - m_{0D}\overline{\Psi}_{D}\Psi_{D} - m_{0S}\overline{\Psi}_{S}\Psi_{S} + \lambda_{1}\left(\overline{\Psi}_{D}\Psi_{D}\right)^{2} + \lambda_{2}\left(\overline{\Psi}_{S}\Psi_{S}\right)^{2} + 2\lambda_{3}\left(\overline{\Psi}_{D}\Psi_{D}\right)\left(\overline{\Psi}_{S}\Psi_{S}\right),$$

 $SU_L(2) \times U_Y(1)$ covariant derivative $D_\mu = \partial_\mu - i \frac{g}{2} \underline{\tau} \underline{A}_\mu - i \frac{g'}{2} B_\mu$, \underline{A}_μ, B_μ and g, g' gauge fields and couplings

- Dimensionful couplings $\lambda_3 = \tilde{\lambda}_3 / \Lambda^2$, m_{0D} , m_{0S} allowed.
- Non-renormalizable effective theory with a Λ (physical) cutoff.
- Further 4-fermion couplings are possible, argument unchanged.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

 Do not mix w/ standard fermions, conserved new fermion-number (parity).

Condensates formed, if $\lambda_i > \lambda_i^{crit}$:

$$\begin{split} &\left\langle \overline{\Psi}_{D\alpha}^{0}\Psi_{D\beta}^{0}\right\rangle_{0}=a_{1}\delta_{\alpha\beta},\\ &\left\langle \overline{\Psi}_{D\alpha}^{+}\Psi_{D\beta}^{+}\right\rangle_{0}=a_{+}\delta_{\alpha\beta}, \qquad \left\langle \overline{\Psi}_{S}\Psi_{D}\right\rangle_{0}=\left\langle \left(\begin{array}{c} \overline{\Psi}_{S}\Psi_{D}^{+}\\ \overline{\Psi}_{S}\Psi_{D}^{0}\end{array}\right)\right\rangle_{0}=\left(\begin{array}{c} 0\\ a_{3}\end{array}\right)\neq 0\\ &\left\langle \overline{\Psi}_{S\alpha}\Psi_{S\beta}\right\rangle_{0}=a_{2}\delta_{\alpha\beta}, \end{split}$$

Self-consistent masses and mixing generated if $\lambda_i > \lambda_i^{crit}$. "Diagonal" mass

Gap equations II

Condensates generate dynamical masses and mixing in L

$$L_{\psi} \rightarrow L_{\Psi}^{\text{lin}} = -m_{+} \overline{\Psi_{D}^{+}} \Psi_{D}^{+} - m_{1} \overline{\Psi_{D}^{0}} \Psi_{D}^{0} - m_{2} \overline{\Psi}_{S} \Psi_{S} - m_{3} \left(\overline{\Psi_{0}^{0}}_{D} \Psi_{S} + \overline{\Psi}_{S} \Psi_{D}^{0} \right)$$

$$m_{+} = m_{0D} - 6\lambda_{1}a_{+} - 8(\lambda_{1}a_{1} + \lambda_{3}a_{2}) = m_{1} + 2\lambda_{1}(a_{+} - a_{1})(1)$$

$$m_{1} = m_{0D} - 6\lambda_{1}a_{1} - 8(\lambda_{1}a_{+} + \lambda_{3}a_{2}), \qquad (2)$$

$$m_{2} = m_{0S} - 6\lambda_{2}a_{2} - 8\lambda_{3}(a_{1} + a_{+}), \qquad (3)$$

$$m_{3} = 2\lambda_{3}a_{3}. \qquad (4)$$

 $m_3 \neq 0$ neutral comp.of the doublet and singlet fermion mix.

 \implies Electroweak symmetry breaking.

Physical fields Ψ_1, Ψ_2 és $\Psi_+ = \overline{\Psi_D^+}$

Diagonalized fields and (physical masses) $\Psi_1 = c \Psi_D^0 + s \Psi_S,$ (M_1) $\Psi_2 = -s \Psi_D^0 + c \Psi_S,$ (M_{2}) $s = \sin \Phi$, $c = \cos \Phi$, mixing angle Φ .

Symm. breaking solution (sin $2\Phi \neq 0$), if $|\lambda_3| > \lambda_3^{crit} = \frac{\pi^2}{\Lambda^2}$

Physical fields Ψ_1, Ψ_2 és $\Psi_+ = \overline{\Psi_D^+}$

Diagonalized fields and (physical masses) $\Psi_1 = c \Psi_D^0 + s \Psi_S,$ (M_1) $\Psi_2 = -s \Psi_D^0 + c \Psi_S, \qquad (M_2)$ $s = \sin \Phi$, $c = \cos \Phi$, mixing angle Φ . Condensates of physical fields $\frac{\delta_{\alpha\beta}}{4}I_{i} = \left\langle \overline{\Psi}_{i\alpha}\Psi_{i\beta}\right\rangle_{0} = -\frac{\delta_{\alpha\beta}}{8\pi^{2}}M_{i}\left(\Lambda^{2} - M_{i}^{2}\ln\left(1 + \frac{\Lambda^{2}}{M_{i}^{2}}\right)\right) \ i=1,2,+.$ $c \cdot s(M_1 - M_2) = 2\lambda_3 c \cdot s(I_1 - I_2),$ $c^{2}M_{1} + s^{2}M_{2} = -\lambda_{1} \left(6 \left(c^{2}I_{1} + s^{2}I_{2} \right) + 8I_{+} \right) - 8\lambda_{3} \left(s^{2}I_{1} + c^{2}I_{2} \right),$ $s^{2}M_{1} + c^{2}M_{2} = -6\lambda_{2}(s^{2}l_{1} + c^{2}l_{2}) - 8\lambda_{3}(c^{2}l_{1} + s^{2}l_{2} + l_{+}),$ $M_{+} = -\lambda_1 \left(8 \left(c^2 l_1 + s^2 l_2 \right) + 6 l_{+} \right) - 8 \lambda_3 \left(s^2 l_1 + c^2 l_2 \right).$

Symm. breaking solution (sin $2\Phi \neq 0$), if $|\lambda_3| > \lambda_3^{crit} = \frac{\pi^2}{\Lambda^2}$.

Symmetry breaking solutions

$$\begin{split} \lambda_3 \mbox{ contours on } & M_1\text{-}M_2 \mbox{ plane } \lambda_3^{crit} = -\pi^2/\Lambda^2 \\ \lambda_3 = \{-10, -12, -15, -20\}\cdot 1/\Lambda^2, \ \Lambda = 3 \mbox{ TeV}. \end{split}$$

Mixing is essential $2c \cdot s = \sin 2\phi \neq 0$.

$$0 = (M_1 - M_2) c \cdot s \left(\frac{1}{\lambda_3} + \frac{\Lambda^2}{\pi^2} - \frac{M_1^3 \ln \left(1 + \frac{\Lambda^2}{M_1^2} \right) - M_2^3 \ln \left(1 + \frac{\Lambda^2}{M_2^2} \right)}{M_1 - M_2} \right) \quad \text{(a)}$$

Perturbative unitarity

Consider 2 \rightarrow 2 elastic scattering of $\Psi_{1,2}, \Psi^+$ new fermions and $|\Re a_0| \leq \frac{1}{2}$ for J = 0 partial wave

Dominant contribution from contact graph $(+ \gamma, W, Z \text{ exchange})$

 $\lambda_i s \leq 8\pi, \qquad s \leq \Lambda^2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Most stringent for λ_2 coupling $\sim \lambda_2 \left(\bar{\Psi_5} \Psi_5 \right)^2$.

Unitarity + Gap equations

 λ_2 contours on M_1 - M_2 plane $\lambda_2 \le 8\pi/\Lambda^2, \Lambda = 3$ TeV, $m_{0D,0S} = 0$.

٥

3 new fermions Ψ_1, Ψ_2, Ψ_+ $M_1 \le M_+ \le M_2$ par's M_1, M_2, c^2 .

- favours small mixing (c^2)
- conserved global quantum number
- composite Higgs $\sim \overline{\Psi}_D \Psi_S$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Standard fermion masses

Higgs Yukawa interactions \Rightarrow 4-fermion terms , $\Phi_{SM}\sim\overline{\Psi}_D\Psi_S$

$$L_{f} = g_{f}\left(\overline{\Psi}_{L}^{f}\Psi_{R}^{f}\right)\left(\overline{\Psi}_{S}\Psi_{D}\right) + g_{f}\left(\overline{\Psi}_{R}^{f}\Psi_{L}^{f}\right)\left(\overline{\Psi}_{D}\Psi_{S}\right),$$

dimensionful coupling constants $g_i = \tilde{g}_i/M^2$ The mixed condensate generates masses for the leptons and quarks.

The electron mass

$$m_e = -4g_e a_3 = -4\tilde{g}_e \frac{a_3}{M^2}.$$

Generates further $e^+e^-\overline{\Psi}_S\Psi_D^0$ type interactions. $(g_e \sim m_e)$ Electron, v_e doublet (\sim down type quarks.)

$$L^{I} = g_{e} \left(\overline{\nu} e_{R} \overline{\Psi}_{S} \Psi_{D}^{+} + \overline{e}_{L} e_{R} \overline{\Psi}_{S} \Psi_{D}^{0} + \overline{e}_{R} \nu \overline{\Psi}_{D}^{+} \Psi_{S} + e_{L} \overline{\Psi}_{D}^{0} \Psi_{S} \right)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Standard fermion masses

Higgs Yukawa interactions \Rightarrow 4-fermion terms , $\Phi_{SM}\sim\overline{\Psi}_D\Psi_S$

$$L_{f} = g_{f}\left(\overline{\Psi}_{L}^{f}\Psi_{R}^{f}\right)\left(\overline{\Psi}_{S}\Psi_{D}\right) + g_{f}\left(\overline{\Psi}_{R}^{f}\Psi_{L}^{f}\right)\left(\overline{\Psi}_{D}\Psi_{S}\right),$$

dimensionful coupling constants $g_i = \tilde{g}_i/M^2$ The mixed condensate generates masses for the leptons and quarks.

The electron mass

$$m_e = -4g_e a_3 = -4\tilde{g}_e \frac{a_3}{M^2}.$$

Generates further $e^+e^-\overline{\Psi}_S\Psi^0_D$ type interactions. $(g_e \sim m_e)$ Electron, v_e doublet (\sim down type quarks)

$$L' = g_e \left(\overline{\nu} e_R \overline{\Psi}_S \Psi_D^+ + \overline{e}_L e_R \overline{\Psi}_S \Psi_D^0 + \overline{e}_R \nu \overline{\Psi}_D^+ \Psi_S + e_L \overline{\Psi}_D^0 \Psi_S \right).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Implications for Phenomenology

From Ψ_D doublet covariant kinetic term renormalizable int's.

$$L^{I} = \overline{\Psi_{D}^{+}} \gamma^{\mu} \Psi_{D}^{+} \left(eA_{\mu} - e \cot 2\theta_{W} Z_{\mu} \right) + \frac{g}{2 \cos \theta_{W}} \overline{\Psi_{D}^{0}} \gamma^{\mu} \Psi_{D}^{0} Z_{\mu} +$$
$$+ \frac{g}{\sqrt{2}} \left(\overline{\Psi_{D}^{+}} \gamma^{\mu} \Psi_{D}^{0} W_{\mu}^{+} + \overline{\Psi_{D}^{0}} \gamma^{\mu} \Psi_{D}^{+} W_{\mu}^{-} \right).$$

Mixing implies

$$\begin{split} L^{I} &= \overline{\Psi_{D}^{+}} \gamma^{\mu} \Psi_{D}^{+} \left(eA_{\mu} - e \cot 2\theta_{W} Z_{\mu} \right) + \\ &+ \frac{e}{\sin 2\theta_{W}} Z_{\mu} \left(c^{2} \overline{\Psi}_{1} \gamma^{\mu} \Psi_{1} + s^{2} \overline{\Psi}_{2} \gamma^{\mu} \Psi_{2} - sc \left(\overline{\Psi}_{1} \gamma^{\mu} \Psi_{2} + \overline{\Psi}_{2} \gamma^{\mu} \Psi_{1} \right) \right) + \\ &+ \left[\frac{g}{\sqrt{2}} W_{\mu}^{+} \left(c \overline{\Psi_{D}^{+}} \gamma^{\mu} \Psi_{1} - s \overline{\Psi_{D}^{+}} \gamma^{\mu} \Psi_{2} \right) + h.c. \right]. \end{split}$$

 $L_{f}^{\text{mass}} \text{ 'Yukawa'' int's are weaker than in SM}$ $g_{e} \leq \sqrt{2h} \frac{m_{e}}{v} = \sqrt{2h} g_{e}^{SM} h \text{ dimensionfull} \left(L_{H} = h \left(D_{\mu} \Phi \right)^{\dagger} \left(D^{\mu} \Phi \right), \right)$ $(D^{\mu} \Phi) = 0$ $(D^{\mu} \Phi)^{\dagger} \left(D^{\mu} \Phi \right) = 0$

Electroweak Precision Parameters

Oblique corrections, '92 Peskin-Takeuchi, ... only via W^{\pm}, Z vacuum polarization if $M_{\text{New Physics}} \gg M_Z$

$$\begin{aligned} \frac{\alpha(M_Z)}{4s_W^2 c_W^2} S &= \Pi'_{W_3B}(0), \\ M_W^2 T &= \Pi_{W_3W_3}(0) - \Pi_{W^+W^-}(0), \\ S &= -0.10 \pm 0.10 \ (-0.08) \\ T &= -0.08 \pm 0.11 \ (+0.09), \\ M_H^{ref} &= 117(300) \ \text{GeV} \end{aligned}$$

S and T vanish for no mixing $c^2 = 0$ (non-degenerate vector-like doublet + singlet). Expect small corrections for the solution of the gap equations.

200

S parameter in FCM

3 parameter, M_1 , M_2 , $c^2 = \cos^2 \Phi$., T, S grows w/ c^2 .

Figure: The max. value of the S parameter vs. M_2 for $M_1 = 120, 160, 210$ GeV. The 95 % C.L. bounds [-0.296, 0.096] are outside the figure.

(ロ) (部) (注) (注)

S parameter does not give constraints.

T parameter in FCM

3 parameter, M_1 , M_2 , $c^2 = \cos^2 \Phi$, $(M_+ \sim c^2 M_1 + s^2 M_2)$., T, S grow with c^2 . T > 0 always

Figure: Constraints on (M_1, M_2) plane. Red curve: *T* gives the max. value of c^2 (@ 95 % C.L.). Below the 0.1 (blue) and 0.2 (green) line c^2 can exceed 0.1 and 0.2. Right panel - the maximum value of *T* vs. (M_1, M_2) .

Heavy Higgs bozon?

- Positive contrib'n to T -> YES
- E.g. $M_H = 300$ GeV, $\Delta T = -0.09$
- Compensated by $\Delta T_{NP} = +0.1$ (160,800) GeV and $c^2 = 0.115$ $M_+ \simeq 720$ GeV

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

æ

Extension of the SM with vector type doublet fermions allows a heavy Higgs - "improved naturalness"

Collider Constraints, LHC

- PDG: doublet Ψ^+ $M_+ > 100$ GeV neutral $M_{1,2} > 45$ GeV w/o assumptions
- LHC example: Drell-Yan production $q\bar{q} \rightarrow \gamma^*, Z^* \rightarrow \Psi^+ \Psi^-$, tree level $(\hat{s} = \tau s)$, without cuts

- Dynamical SB Model is proposed with extra vector-like fermions (doublet + singlet)
- Mixed condensate, mixing between diff. rep's. \Rightarrow EWSB
- Composite Higgs, Allows a Heavy Higgs boson naturally

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Unreachable at 7 TeV LHC with low luminosity
- At 14 TeV LHC dedicated analysis needed
- ullet Ψ_1 is an ideal dark matter candidate

Backups - Gauge boson masses

Effective doublet composite scalar (Y=1) gives masses

$$\Phi = \begin{pmatrix} \Phi^+ \\ \Phi^0 \end{pmatrix} = \overline{\Psi}_{\mathcal{S}} \Psi_{\mathcal{D}},$$

 Φ kinetic term is generated in the low energy effective description (like in top-condensate models).

$$L_H = h \left(D_\mu \Phi \right)^\dagger \left(D^\mu \Phi \right) \quad \dim(h) = -4$$

$$h \Phi^{0\dagger} \Phi^0 \rightarrow h \left\langle \Phi^{0\dagger} \Phi^0 \right\rangle_0 = h \left(16a_3^2 - 4a_1a_2 \right) = \frac{v^2}{2},$$

get standard masses with, $v = \left(\sqrt{2} \, G_F\right)^{-1/2} = 254$ GeV

$$m_W = \frac{g_V}{2}, \qquad m_Z = \frac{g_V}{2\cos\theta_W}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• At 14 TeV LHC dedicated analysis

- jetmass analysis (vector-like quarks) (Skiba and Tucker-Smith PR D75 2007)
- similar to chargino- neutralino production, when χ^0 is the LSP
- like sign lepton final states, similar to 4thgeneration leptons (Özcan, Aguilar-Saavedra, Aguila, Tuominen et al. ...)
- New decay channel(s) $(H \rightarrow \bar{\Psi}_{S} \Psi_{D}^{0},...)$ for the Higgs boson is possible

◆□> <圖> <필> <필> < => < =>