Walking Technicolor at Colliders

Matti Järvinen

CP³ - Origins

Particle Physics & Origin of Mass

Odense

Planck 2010 — June 2

Standard model fermions — Lagrangian in terms of elementary fields

Lagrangian for walking technicolor

Lagrangian: NMWT/MWT, $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$

$$\mathcal{L} = -\frac{1}{2} \operatorname{Tr} \left[\widetilde{W}_{\mu\nu} \widetilde{W}^{\mu\nu} \right] - \frac{1}{4} \widetilde{B}_{\mu\nu} \widetilde{B}^{\mu\nu} - \frac{1}{2} \operatorname{Tr} \left[\mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} \right] - \frac{1}{2} \operatorname{Tr} \left[F_{\mathrm{L}\mu\nu} F_{\mathrm{L}}^{\mu\nu} + F_{\mathrm{R}\mu\nu} F_{\mathrm{R}}^{\mu\nu} \right]$$

$$+ m^{2} \operatorname{Tr} \left[C_{\mathrm{L}\mu}^{2} + C_{\mathrm{R}\mu}^{2} \right] + \frac{1}{2} \operatorname{Tr} \left[D_{\mu} M D^{\mu} M^{\dagger} \right] - \tilde{g}^{2} r_{2} \operatorname{Tr} \left[C_{\mathrm{L}\mu} M C_{\mathrm{R}}^{\mu} M^{\dagger} \right]$$

$$- \frac{i \tilde{g} r_{3}}{4} \operatorname{Tr} \left[C_{\mathrm{L}\mu} \left(M D^{\mu} M^{\dagger} - D^{\mu} M M^{\dagger} \right) + C_{\mathrm{R}\mu} \left(M^{\dagger} D^{\mu} M - D^{\mu} M^{\dagger} M \right) \right]$$

$$+ \frac{\tilde{g}^{2} s}{4} \operatorname{Tr} \left[C_{\mathrm{L}\mu}^{2} + C_{\mathrm{R}\mu}^{2} \right] \operatorname{Tr} \left[M M^{\dagger} \right] + \frac{\mu^{2}}{2} \operatorname{Tr} \left[M M^{\dagger} \right] - \frac{\lambda}{4} \operatorname{Tr} \left[M M^{\dagger} \right]^{2}$$

$$+ i \bar{q}_{\dot{\alpha}}^{i} \overline{\sigma}^{\mu, \dot{\alpha}\beta} D_{\mu} q_{\beta}^{i} + i \bar{l}_{\dot{\alpha}}^{i} \overline{\sigma}^{\mu, \dot{\alpha}\beta} D_{\mu} l_{\beta}^{i} + i \overline{L}_{\dot{\alpha}} \overline{\sigma}^{\mu, \dot{\alpha}\beta} D_{\mu} L_{\beta}$$

$$- \left[\bar{q}_{L}^{i} \left(Y_{u} \right)_{i}^{j} M \frac{1 + \tau^{3}}{2} q_{jR} + \bar{q}_{L}^{i} \left(Y_{d} \right)_{i}^{j} M \frac{1 - \tau^{3}}{2} q_{jR} + \mathrm{h.c.} \right]$$

Use Weinberg sum rules and the S parameter to link to underlying theory \Rightarrow remaining parameters M_A , \tilde{g} (and the Higgs mass)

Model implementation

Complete, tested implementation (used in this study)

- \bigcirc LanHEP Automatic generation of Feynman rules \longrightarrow
- CalcHEP Parton level cross sections and event generation
- □ Implementation with FeynRules mathematica package
 - O Under testing
 - O Interfaces to CalcHEP/CompHEP, FeynArts, MadGraph, Sherpa, ...

Technicolor at LHC and at linear colliders

Conclusion

Effective field theory was used to study walking technicolor at colliders

LHC has the potential to discover TC spin-one meson(s) in the whole parameter space

Linear collider study and an update for LHC in progress

Associated Higgs production

Higgs production in association with Z/W modified by composite spin-one states

[Zerwekh 05]

Strong enhancement of $\sigma(pp \to WH)$ and $\sigma(e^+e^- \to ZH)$

Weinberg sum rules (WSRs) and the S parameter — assuming saturation by first pair of resonances

☐ First WSR

$$F_V^2 - F_A^2 = F_\Pi^2$$

 \Rightarrow eliminates one parameter

 $\Box \text{ Second WSR for walking dynamics}$ $F_V^2 M_V^2 - F_A^2 M_A^2 = a \frac{8\pi^2}{d(R)} F_\pi^4 \quad \text{with} \quad a = \mathcal{O}(1)$

 \Box The S parameter ("0th WSR") $S = 4\pi \left(\frac{F_V^2}{M_V^2} - \frac{F_A^2}{M_A^2} \right)$

fixed to its small naive value 0.3

Constraining parameter space

After WSR \longrightarrow most important parameters M_A , \tilde{g} (and the Higgs mass)

- \Box M_A : (Axial) spin-one mass scale
 - O Low mass window $M_A \lesssim 1$ TeV: $M_A < M_V$ by WSR
 - O High mass window $M_A pprox 2$ TeV: $M_A > M_V$
- $\Box \tilde{g}$: TC interaction strength

O Mixing of the heavy composite vectors ($R_{1,2}$) with Z,W bosons $\mathcal{O}\left(g/\tilde{g}
ight)$

Phenomenology

- \Box Look for heavy spin-one states $R_{1,2}$
- \Box Phenomenology controlled by g/\tilde{g} (with $g\simeq 0.65$)

Basic rough idea

 $\begin{array}{l} \bigcirc \text{Low } \tilde{g} \simeq 2 - 3 \text{: dilepton final states} \\ \text{DY } pp \rightarrow R_{1,2} + X \rightarrow 2\ell + X \text{ or} \\ e^+e^- \rightarrow R_{1,2} \rightarrow \mu^+\mu^- \\ \bigcirc \text{High } \tilde{g} \gtrsim 5 \text{: decay to } ZZ, ZW, WW \\ \text{e.g. } pp \rightarrow R_{1,2} + X \rightarrow ZW + X \\ \text{or } e^+e^- \rightarrow R_{1,2} \rightarrow W^+W^- \\ \end{array}$

Dilepton mass distributions at 100 fb⁻¹; $\sqrt{s} = 14$ TeV Top: Drell-Yan: Neutral

 $R^0_{1,2} \to \ell^+ \ell^-$

Bottom: Charged

 $R_{1,2}^{\pm} \to \ell^{\pm} \nu$

 $M_A = 0.5, 1, 1.5, 2 \text{ TeV}$

[arXiv:0809.0793 A. Belyaev, R. Foadi, M. T. Frandsen, MJ, A. Pukhov, F. Sannino]

q

 \bar{q}'

 $W^+, R^+_{1,2}$

Higgs production in association with Z/W modified by composite spin-one states

[Zerwekh 05]

 $Z, \gamma, R_{1.2}^0$

Higgs production cross section in $pp \rightarrow WH$ compared to SM (dashed line): mostly enhanced

Technicolor at linear colliders

Technicolor at linear colliders,=0.2 TeV M_A = 0.75 TeV

Differential cross section for Associated Higgs production

$$e^+e^- \to R^0_{1,2} \to HZ$$

Large enhancement with respect to SM

Full event analysis for

 $HZ \to 4j + 2\ell$

final state

Top: $\sqrt{s} = 1$ TeV Bottom: $\sqrt{s} = 3$ TeV

 $\tilde{g} = 2, 5$

Dotted line: SM background $e^+e^- \rightarrow ZWW \rightarrow 4j + 2\ell$

before cuts

Technicolor at linear colliders

Axial signal (at around 0.7 TeV) will remain visible after adding branching to lepton final states (The simplest Higgs-vector coupling assumed here) Walking technicolor (WT) models can allow for a light composite Higgs (a few hundred GeV)

 \Box Scalar $f_0(660)$ in QCD lighter than vector states

 \Box Large N_c scaling argument

Higgs mass further reduced by walking dynamics?

[Hong, Hsu, Sannino 04] [Dietrich, Sannino, Tuominen 05] [Sannino 08]

Solving truncated Schwinger-Dyson and Bethe-Salpeter equations

 \Box Light Higgs can help to unitarize WW scattering

[Foadi, MJ, Sannino 08]