BEYOND THE MINIMAL COMPOSITE HIGGS MODEL 2 HIGGSES AS COMPOSITE PSEUDO-NGB'S

Javí Serra

(Universitat Autònoma de Barcelona)

work (in progress) in collaboration with: J.Mrazek, A.Pomarol, R.Rattazzi, M.Redi, A.Wulzer

WHY & COMPOSITE-NGB-HIGGS?

Spontaneous Symmetry Breaking:

 $G \longrightarrow H$ $\Sigma(h/f)$ = G/H sigma model scale

Spontaneous Symmetry Breaking:

 $G \longrightarrow H$ $\Sigma(h/f)$ = G/H sigma model scale

i) $G \supset SU(2)_L \times U(1)_Y$ gauged

WHAT DO WE GET ?Minimal Composite Higgs Model: $G = SO(5) \longrightarrow H = O(4)$ G/H = 4 = (2,2)

Pheno: new resonances + modifications of Higgs couplings

WHAT DO WE GET ?

Minimal Composite Higgs Model: $G = SO(5) \longrightarrow H = O(4)$ G/H = 4 = (2,2)

Pheno: new resonances + modifications of Higgs couplings

Minimality = number of NGB's

is that a good guide?

WHAT DO WE GET ?

Minimal Composite Higgs Model: $G = SO(5) \longrightarrow H = O(4)$ G/H = 4 = (2,2)

Pheno: new resonances + modifications of Higgs couplings

Minimality = number of NGB's

Example of *minimal* cosets from constituent "quarks": $SU(4) \rightarrow Sp(4)$ G/H = 5 = 4 + 1 = (2,2) + (1,1) $SU(5) \rightarrow SO(5)$ G/H = 14Example of *minimal* cosets from constituent "quarks": G/H = 5 = 4 + 1 = (2,2) + (1,1)B.Gripaios, A.Pomarol, F.Riva, JS J.Galloway, J.Evans, M.Luty, R.Tacchi

is that a good guide?

WHAT DO WE GET ?

Minimal Composite Higgs Model: $G = SO(5) \longrightarrow H = O(4)$ G/H = 4 = (2,2)

Pheno: new resonances + modifications of Higgs couplings

Minimality = number of NGB's

is that a good guide?

Example of *minimal* cosets from constituent "quarks": $SU(4) \rightarrow Sp(4)$ G/H = 5 = 4 + 1 = (2,2) + (1,1) $SU(5) \rightarrow SO(5)$ G/H = 14B.Gripaios, A.Pomarol, F.Riva, JS J.Galloway, J.Evans, M.Luty, R.Tacchi

models with 2 Higgs doublets

2 COMPOSITE-NGB-HIGGS: IS IT VIABLE?

$$h_i = (\mathbf{2}, \mathbf{2}), \quad i = 1, 2$$

→ Large contributions to $\delta \rho$:

$$\langle h_1 \rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ v_1 \end{pmatrix} \langle h_2 \rangle \stackrel{H}{=} \left\{ \begin{pmatrix} 0 \\ 0 \\ v_2 \\ 0 \end{pmatrix} \right\} SO(2) \cong U(1)_Q \text{ custodial SO(3) breaking}$$

$$\frac{C_T}{f^2} (h_1^T D_\mu h_2)^2 \longrightarrow \delta \rho \sim c_T \frac{v^2}{f^2}$$

$$\frac{\langle h \rangle / f \rangle^2}{(\langle h \rangle / f \rangle^2 } \frac{v^2 / f^2}{s^2} \lesssim 1 \times 10^{-3}$$

Dangerous Flavor transitions:

$$\bar{q}_L \left(y_1^u \tilde{h}_1 + y_2^u \tilde{h}_2 \right) u_R + \bar{q}_L \left(y_1^d h_1 + y_2^d h_2 \right) d_R \quad \text{misaligned Yukawa's}$$

$$s \to h_2 \quad d \sim \frac{m_s^2 V_{us}^2}{2m_{h_2}^2} (\bar{s}_L d_R)^2 \quad \longrightarrow \quad m_{h_2} \gtrsim 2 \text{ TeV}$$

INERT COMPOSITE-HIGGS MODEL

defined by extra Z₂: $h_1 \rightarrow + h_1$ $h_2 \rightarrow -h_2$ + $\langle h_2 \rangle = 0$ $SM \rightarrow + SM$ Z₂ exactly conserved $NO (h_2)^{2n}$ couplings

immediate consequences:

- Automathic solution of $\delta \rho$ and Flavor problems.
- Stability of lightest h_2 component (DM candidate).
- → Double h_2 production @ colliders.

EXAMPLE: $G = O(6) \longrightarrow H = O(4) \times O(2)$

Breakings: $(SU(2)_L, SU(2)_R)_{Z_2}$

spontaneous,
$$\Sigma(h_1, h_2) = O(6)/O(4) \times O(2) \in \mathbf{20}^{*}$$

= $(\mathbf{2}, \mathbf{2})_+ + (\mathbf{2}, \mathbf{2})_-$

explicit,
$$\psi_{SM} \in \mathbf{6}$$
 $\mathbf{6} = (\mathbf{2},\mathbf{2})_+ + (\mathbf{1},\mathbf{1})_+ + (\mathbf{1},\mathbf{1})_ q_L = (u_L,d_L)$ u_R, d_R

 $egin{aligned} W^{\mu}_{SM} \in \end{aligned} \mathbf{15} \ \mathbf{15} = (\mathbf{1},\mathbf{1})_{+} + (\mathbf{3},\mathbf{1})_{+} + (\mathbf{1},\mathbf{3})_{+} + (\mathbf{2},\mathbf{2})_{+} + (\mathbf{2},\mathbf{2})_{-} \ & \swarrow \ & \searrow \ & B_Y \end{aligned}$

INERT HIGGS: $O(6)/O(4) \times O(2)$

<u>EW Symmetry Breaking</u>: $\langle h_2 \rangle = 0$

 $V(h_1) = \alpha \cos(h_1/f) - \beta \sin^2(h_1/f) \longrightarrow \cos(h_1/f) = -\alpha/2\beta$

INERT HIGGS: $O(6)/O(4) \times O(2)$

Spectrum:

splittings, $h_2 \to T = (H^{\pm}, A) \oplus S$

\$0(6)/\$0(4)X\$0(2)

Signatures of composite-NGB: $\mathcal{L}_{coset}[h_1/f, h_2]$

$$\mathcal{L}_{coset}[h_1/f, h_2/f] = \frac{f^2}{2} \operatorname{Tr}[|D_{\mu}\Sigma|^2]$$

$$= \frac{1}{2} (D_{\mu} h_{j})^{2} + \frac{c_{\partial}}{f^{2}} (h_{i} \partial_{\mu} h_{i})^{2} + \frac{c_{W}}{f^{2}} (h_{i} W_{\mu} h_{j})^{2} + \frac{c_{\partial W}}{f^{2}} (h_{i} \partial_{\mu} h_{i}) (h_{j} W^{\mu} h_{j})$$
$$\langle h_{1} \rangle = v, \ \langle h_{2} \rangle = 0$$

CONCLUSIONS

If the hierarchy problem is solved by strong dynamics, we can expect rich phenomenology of pseudo-NGB's.

motivated framework for extended Higgs sectors

example, Inert composite-Higgs model (not near MSSM)

Completely viable

→ "predictions": large h_2 masses, $m_{h2} \sim 300 \text{GeV}$ small custodial splittings, $Dm_T \sim 10 \text{GeV}$ $O(v^2/f^2) \sim 20\%$ deviations in couplings