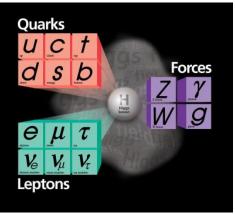
P	Motivations	Without the Higgs	The middle way	Phenomenology of the associated production	Summary

A "composite" scalar-vector system at the LHC

Riccardo Torre

Ph.D. course in Physics University of Pisa


Planck 2010

CERN, 2 June 2010

Based on the papers R. Barbieri, A. E. Carcamo, G. Corcella, R. T. and E. Trincherini: arXiv:0911.1942 [hep-ph] A. E. Carcamo and R. T. arXiv:1005.3809 [hep-ph]

Motivations	Without the Higgs	The middle way	Phenomenology of the associated production	Summary
0				
The Standard Mod	del in one slide			
The Stan	dard Model Pa	rticle content		

- Vectors (Forces): gauge group $SU\left(3\right)_C \times SU\left(2\right)_L \times U\left(1\right)_Y$ spontaneously broken to $SU\left(3\right)_C \times U\left(1\right)_e$
- Fermions (Matter): 3 generations of quarks and leptons
- Scalars? (Higgs?): the Higgs boson
 - $\textbf{O} \ \ \textbf{A} \ \ \textbf{scalar} \ \ \textbf{doublet} \ \ \textbf{under} \ \ SU(2)_L \ \ \textbf{interacting} \\ \ \ \textbf{with all other fields acquires a} \ \ \textbf{VEV}$
 - W, Z bosons acquire a mass with the spontaneous breaking
 SU(2) × U(1) + U(1)
 - $SU(2)_L \times U(1)_Y \rightarrow U(1)_e$
 - Leptons and quarks acquire a mass through Yukawa couplings to the Higgs boson

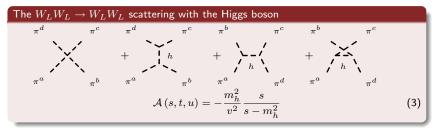
Tevatron

Motivations	Without the Higgs	The middle way	Phenomenology of the associated production	Summary
0				
The Standard Mo	del in one slide			
The Stan	dard Model Pa	rticle content		

- Vectors (Forces): gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$ spontaneously broken to $SU(3)_C \times U(1)_e$
- Fermions (Matter): 3 generations of quarks and leptons
- Scalars? (Higgs?): the Higgs boson

 - **(a)** W, Z bosons acquire a mass with the spontaneous breaking $SU(2) \rightarrow U(1) \rightarrow U(1)$
 - $SU\left(2\right)_{L}\times U\left(1\right)_{Y}\rightarrow U\left(1\right)_{e}$
 - Leptons and quarks acquire a mass through Yukawa couplings to the Higgs boson

Quarks Forces Leptons


 $\mathsf{Tevatron} + \mathsf{R}. \ \mathsf{T}.$

Unfortunately this is the only Higgs we have seen so far!

Motivations	Without the Higgs	The middle way	Phenomenology of the associated production	Summary
00				
The Higgs boson				
Why do y	ve need the Hig	os hoson?		

- To generate the masses of all the massive particles (weak gauge bosons and fermions)
- To keep S-matrix unitarity in longitudinal WW scattering

Motivations	Without the Higgs	The middle way	Phenomenology of the associated production	Summary
	•0			
Heavy vectors in H	iggsless models			

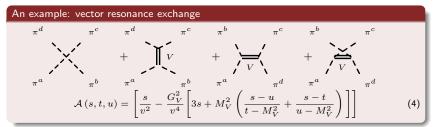
Make it without an Higgs boson: an example

- The masses can be generated by a non-linear sigma model based on the non-linear field $U = e^{i \frac{\pi^a \sigma^a}{v}}$ containing the Goldstone bosons field
- $\bullet\,$ The exchange of a new massive particles, can turn the asymptotic amplitude for $W_L W_L \to W_L W_L$ to a constant up to a cut-off
- An effective field theory based on the $SU(2)_L \times SU(2)_R / SU(2)_{L+R}$ global symmetry containing a new massive vector triplet V^a_μ can be constructed with a cut-off $\Lambda \approx 4\pi v \approx 3$ TeV

One vector below the cut-off: the general Lagrangian

$$\mathcal{L}^{V} = \mathcal{L}_{\chi} + \mathcal{L}^{V}_{kin} + \mathcal{L}^{V}_{int} \,. \tag{4}$$

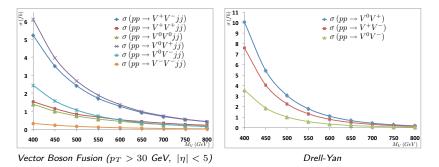
$$\mathcal{L}_{\chi} = \frac{v^2}{4} \left\langle D_{\mu} U \left(D^{\mu} U \right)^{\dagger} \right\rangle - \frac{1}{2g^2} \left\langle W_{\mu\nu} W^{\mu\nu} \right\rangle - \frac{1}{2g'^2} \left\langle B_{\mu\nu} B^{\mu\nu} \right\rangle$$
(5)


$$\mathcal{L}_{kin}^{V} = -\frac{1}{4} \left\langle \hat{V}_{\mu\nu} \hat{V}^{\mu\nu} \right\rangle + \frac{M_{V}^{2}}{2} \left\langle V_{\mu} V^{\mu} \right\rangle \tag{6}$$

$$\mathcal{L}_{int}^{V} = -\frac{ig_{V}}{2\sqrt{2}} \left\langle \hat{V}_{\mu\nu}[u^{\mu}, u^{\nu}] \right\rangle - \frac{f_{V}}{2\sqrt{2}} \left\langle \hat{V}_{\mu\nu} \left(uW^{\mu\nu}u^{\dagger} + u^{\dagger}B^{\mu\nu}u \right) \right\rangle \\
+ \frac{ig_{K}}{4\sqrt{2}} \left\langle \hat{V}_{\mu\nu}[V^{\mu}, V^{\nu}] \right\rangle - \frac{1}{8} \left\langle [V_{\mu}, V_{\nu}][u^{\mu}, u^{\nu}] \right\rangle + \frac{g_{V}^{2}}{8} \left\langle [u_{\mu}, u_{\nu}][u^{\mu}, u^{\nu}] \right\rangle,$$
(7)

Motivations	Without the Higgs	The middle way	Phenomenology of the associated production	Summary
	••			
Heavy vectors in H	Higgsless models			

Make it without an Higgs boson: an example


- The masses can be generated by a non-linear sigma model based on the non-linear field $U = e^{i \frac{\pi^a \sigma^a}{v}}$ containing the Goldstone bosons field
- $\bullet\,$ The exchange of a new massive particles, can turn the asymptotic amplitude for $W_L W_L \to W_L W_L$ to a constant up to a cut-off
- An effective field theory based on the $SU(2)_L \times SU(2)_R / SU(2)_{L+R}$ global symmetry containing a new massive vector triplet V^a_μ can be constructed with a cut-off $\Lambda \approx 4\pi v \approx 3$ TeV

- For $G_V = g_V M_V = \frac{v}{\sqrt{3}}$ the asymptotic amplitude reduces to a constant
- However the unitarity is not formally restored up to all energies (the coefficients of the partial wave expansion of the scattering amplitude grow logarithmically with s even in the case $G_V = \frac{v}{\sqrt{3}}$)

Motivations	Without the Higgs	The middle way	Phenomenology of the associated production	Summary
	0•			
Heavy vectors in I	Higgsless models			
Total cro	ss sections for t	he pair produc	tion of heavy vector bosons	

- The pair production of vector resonances is important since it is sensitive to different couplings with respect to the single production (in particular the trilinear coupling g_K)
- Total cross sections at the LHC ($\sqrt{s} = 14$ TeV) for $G_V = 200$ GeV, $F_V = 2G_V$ and $g_k = 1/(\sqrt{2}g_V)$ as functions of the heavy vector mass have been obtained with the matrix element generator CalcHEP

R. Barbieri, A. E. Carcamo, G. Corcella, R. T., E. Trincherini, 2009

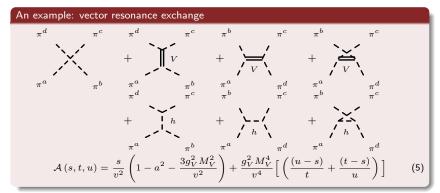
Motivations	Without the Higgs	The middle way	Phenomenology of the associated production	Summary
		000		
Scalar and vector				
CI · ·		• • TT7 TT7	and the second	

Sharing the task of unitarizing $W_L W_L$ scattering

- If only a vector or only a scalar is relevant with a mass below the cut-off its coupling to the Goldstone bosons is completely constrained by the elastic unitarity bound
- The presence of both a scalar and a vector with masses below the cut-off makes it possible to relax these constraints

One vector below the cut-off: the general Lagrangian

$$\mathcal{L}_{eff} = \mathcal{L}^V + \mathcal{L}_h + \mathcal{L}_{h-V} \,. \tag{5}$$


$$\mathcal{L}_{h} = \frac{1}{2} \partial_{\mu} h \partial^{\mu} h + \frac{m_{h}^{2}}{2} h^{2} + \frac{v^{2}}{4} \left\langle D_{\mu} U \left(D^{\mu} U \right)^{\dagger} \right\rangle \left(2a \frac{h}{v} + b \frac{h^{2}}{v^{2}} \right), \tag{6}$$

$$\mathcal{L}_{h-V} = \frac{dv}{8g_V^2} h \left\langle V_\mu V^\mu \right\rangle \tag{7}$$

Motivations	Without the Higgs	The middle way	Phenomenology of the associated production	Summary
		000		
Scalar and vector				
CI 1 1		· · TT7 TT7	and the second	

Sharing the task of unitarizing $W_L W_L$ scattering

- If only a vector or only a scalar is relevant with a mass below the cut-off its coupling to the Goldstone bosons is completely constrained by the elastic unitarity bound
- The presence of both a scalar and a vector with masses below the cut-off makes it possible to relax these constraints

 The elastic unitarity constraint reduces to a relation between the couplings a and $g_V=G_V/M_V$

Motivations	Without the Higgs	The middle way	Phenomenology of the associated production	Summary
		000		
Scalar and vector				
Asymptot	ic behavior of t	he relevant an	nplitudes	

Asymptotic amplitudes

$$\mathcal{A}(s,t,u)^{\pi\pi\to\pi\pi} \approx \frac{s}{v^2} \left(1 - a^2 - \frac{3g_V^2 M_V^2}{v^2} \right) + \frac{g_V^2 M_V^4}{v^4} \left[\left(\frac{(u-s)}{t} + \frac{(t-s)}{u} \right) \right]$$
(6a)

$$\mathcal{A}\left(s,t,u\right)^{\pi\pi\to V_L V_L} \approx \left(\frac{ad}{2v^2} - \frac{1}{4v^2}\right) \left(s - 2M_V^2\right) \tag{6b}$$

$$\mathcal{B}(s,t,u)^{\pi\pi \to V_L V_L} \approx \frac{u-t}{4v^2} \left[1 + \frac{3M_V^2}{s} \right] - \frac{g_V^2 M_V^2 u}{v^4} \left(1 + \frac{4M_V^2}{s} + \frac{2M_V^2}{u} \right)$$
(6c)

$$\mathcal{A}\left(s,t,u\right)^{\pi\pi\to hh} \approx -\frac{1}{v^2} \left(\left(b-a^2\right)s + \frac{am_h^2}{2} \left(3-2a\right) \right) \tag{6d}$$

$$\mathcal{A}(s,t,u)^{\pi\pi \to V_L h} \approx \frac{ig_V M_V(t-u)}{v} \left[\frac{a}{v^2} - \frac{d}{8g_V^2 M_V^2} \right]$$
$$ig_V M_V(t-u) \left[a \left(-2 - 2 \right) - d - \left(-2 - 2 \right) \right]$$

$$+\frac{ig_V M_V (t-u)}{vs} \left\lfloor \frac{a}{v^2} \left(M_V^2 - m_h^2 \right) + \frac{d}{8g_V^2 M_V^2} \left(m_h^2 - 2M_V^2 \right) \right\rfloor$$
(6e)

Motivations	Without the Higgs	The middle way	Phenomenology of the associated production	Summary
		000		
Scalar and vector				
Asymptot	tic behavior of t	he relevant an	plitudes	

For the choice of the parameters

Gauge parameters $a = \frac{1}{2}, \qquad b = \frac{1}{4}, \qquad d = 1, \qquad g_V = \frac{v}{2M_V}$ (7)

the theory reduces to the $SU(2)_L \times SU(2)_C \times SU(2)_R$ gauge theory spontaneously broken by 2 Higgs doublets in the case of very heavy L-R-parity odd Higgs and all the asymptotic amplitudes but B(s,t,u) turn to constants

Asymptotic amplitudes (the gauge case)

$$\mathcal{A}\left(s,t,u\right)^{\pi\pi\to\pi\pi} \approx \frac{M_V^2}{4v^2} \left[\left(\frac{(u-s)}{t} + \frac{(t-s)}{u} \right) \right] + O\left(\frac{m_h^2}{v^2} \right) \,, \tag{8a}$$

$$\mathcal{A}(s,t,u)^{\pi\pi \to V_L V_L} \approx O\left(\frac{m_h^2}{v^2}\right), \tag{8b}$$

$$\mathcal{B}(s,t,u)^{\pi\pi \to V_L V_L} \approx -\frac{t}{4v^2} - \frac{M_V^2}{4v^2} \left(\frac{u+3t}{s} + 2\right),$$
(8c)

$$\mathcal{A}\left(s,t,u\right)^{\pi\pi \to hh} \approx -\frac{m_{h}^{2}}{4v^{2}}, \tag{8d}$$

$$\mathcal{A}\left(s,t,u\right)^{\pi\pi \to V_{L}h} \approx \frac{iM_{V}^{2}\left(u-t\right)}{4v^{2}s} + O\left(\frac{m_{h}^{2}}{v^{2}}\right).$$
(8e)

Motivations	Without the Higgs	The middle way	Phenomenology of the associated production	Summary
			• 0	
Scalar and vector	pair productions			
Scalar an	d vector pair pr	oductions		

$W_L W_L \rightarrow W_L W_L$ unitarity constrain

$$a = \sqrt{1 - \frac{3g_V^2 M_V^2}{v^2}}$$
(9)

- Since the vector V doesn't contribute to the scalar pair production, the results are the same we would have for example in the case of a Strongly Interacting Light Higgs (SILH) (R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, 2010)
- The total cross section for the vector pair production is lowered with respect to the case without a light scalar since the unitarity bound requires a lower G_V value ($G_V < v/\sqrt{3}$) and the exchange of the scalar doesn't suffice for compensating this decrease
- The associated scalar-heavy vector production with the constraint (9) depends on 2 parameters for fixed M_V and m_h : g_V and d.

Motivations	Without the Higgs	The middle way	Phenomenology of the associated production	Summary
			00	
Associated produc	ction			
Total cro	ss section for th	e DY associat	ed production at the LHC	

- The DY associated production is the main production mechanism at the LHC
- Total cross sections for the associated scalar-heavy vector production at the LHC at $14~{\rm TeV}$ for $M_h=180~{\rm GeV}$ and different values of the couplings g_V and d

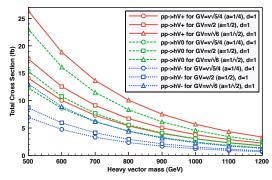


Figure: A. E. Carcamo and R. T, 2010

- A signal could be accessible to the LHC but...
- .. a careful study of the background is required to understand if the signal can emerge

Motivations	Without the Higgs	The middle way	Phenomenology of the associated production	Summary
00	00	000	00	0
Summary				
Summary				

- If a "standard" light Higgs boson doens't exist, a strongly interacting dynamics can be responsible for the EWSB and new degrees of freedom can become relevant at the Fermi scale
- We studied the case in which both a scalar and a vector are relevant with a mass below the cut-off with a model independent approach
- The pair production phenomenology produced by such a spectrum can be interesting at the LHC...
- ... but an analysis of the background is necessary

Thanks to A. E. Carcamo, R. Barbieri, E. Trincherini, S. Rychkov and G. Corcella

Motivations	Without the Higgs	The middle way	Phenomenology of the associated production	Summary
				00
Summary				
Reference	S			

Some references

- A. Carcamo and R. T. A "Compostie" scalar-vector system at the LHC, arXiv:1005.3809 [hep-ph]
- R. Barbieri, G. Isidori, V. S. Rychkov and E. Trincherini, Heavy Vectors in Higgs-less Models, arXiv:0806.1624 [hep-ph]
- G. F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, arXiv:hep-ph/0703164
- R. Barbieri, A. Carcamo, G. Corcella, R. T. and E. Trincherini, Composite Vectors at the Large Hadron Collider, arXiv:0911.1942 [hep-ph]
- O. Catá, G. Isidori and J. F. Kamenik, Drell-Yan Production of Heavy Vectors in Higgs-less Models, arXiv:0905.0490 [hep-ph]
- **()** G. Isidori, Effective Theories of Electroweak Symmetry Breaking, arXiv:0911.3219 [hep-ph]
- R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong Double Higgs Production at the LHC, arXiv:1002.1011 [hep-ph]