STRONG DOUBLE HIGGS PRODUCTION

Roberto Contino

R.C., C.Grojean, M.Moretti, F.Piccinini, R.Rattazzi JHEP 05(2010) 089 based on:

work in progress with A.Pomarol, R.Rattazzi

Motivation:

After we discover a light scalar, how can we test the role it plays in the EWSB ?

EVIDENCE FOR A LIGHT HIGGS-LIKE SCALAR

EWSB sector described by an $SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$ chiral Lagrangian:

$$\Sigma = \exp\left(i\sigma^{a}\chi^{a}/v\right) \qquad D_{\mu}\Sigma = \partial_{\mu}\Sigma - ig_{2}\frac{\sigma^{a}}{2}W_{\mu}^{a}\Sigma + ig_{1}\Sigma\frac{\sigma_{3}}{2}B_{\mu}$$
$$\mathcal{L} = \frac{v^{2}}{4}\operatorname{Tr}\left(D_{\mu}\Sigma^{\dagger}D^{\mu}\Sigma\right)$$
$$+ a_{T}\frac{v^{2}}{8}\left[\operatorname{Tr}\left(\Sigma^{\dagger}D_{\mu}\Sigma\sigma^{3}\right)\right]^{2} + a_{S}\operatorname{Tr}\left(W_{\mu\nu}\Sigma B^{\mu\nu}\Sigma^{\dagger}\right)$$
$$- \frac{v}{\sqrt{2}}\sum_{i,j}\left(u_{L}^{(i)} d_{L}^{(i)}\right)\Sigma\left(\begin{matrix}\lambda_{ij}^{u}u_{R}^{(j)}\\\lambda_{ij}^{d}d_{R}^{(j)}\end{matrix}\right) + h.c.$$

For $a_T = 0$, in the limit $g_1 = 0$, $\lambda^u = \lambda^d$, there is an $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$ global symmetry

 $\Sigma \to U_L \Sigma U_R^{\dagger}$

the NG bosons χ^a transform as a triplet under the custodial SU(2)_V

 $M_W = M_Z \quad \text{ for } g_1 = 0$

Adding an extra scalar, singlet of the custodial $SU(2)_V$

$$\mathcal{L} = \frac{v^2}{4} \operatorname{Tr} \left(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right) \left(1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} + \cdots \right) + V(h)$$

$$- \frac{v}{\sqrt{2}} \sum_{i,j} \left(u_L^{(i)} d_L^{(i)} \right) \Sigma \left(1 + c \frac{h}{v} + \cdots \right) \left(\lambda_{ij}^{u} u_R^{(j)} \right) + h.c.$$
a, b, c are free parameters

$$\begin{bmatrix} \text{ for a SM Higgs: } a=b=c=1 \end{bmatrix}$$

$$M^3 \qquad M_Z$$

$$M_Z$$

$$M_Z$$

$$M_Z$$

$$\Delta \epsilon_{1,3} = -c_{1,3} a^2 \log \frac{\Lambda^2}{m_h^2}$$

see: Barbieri et al. PRD 76 (2007) 115008

Adding an extra scalar, singlet of the custodial SU(2)_V

$$\mathcal{L} = \frac{v^2}{4} \operatorname{Tr} \left(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right) \left(1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} + \cdots \right) + V(h)$$
$$- \frac{v}{\sqrt{2}} \sum_{i,j} \left(u_L^{(i)} \ d_L^{(i)} \right) \Sigma \left(1 + c \frac{h}{v} + \cdots \right) \begin{pmatrix} \lambda_{ij}^u \ u_R^{(j)} \\ \lambda_{ij}^d \ d_R^{(j)} \end{pmatrix} + h.c.$$

 $---- \Lambda \sim 1 \,\mathrm{TeV}$

$$\Delta \epsilon_{1,3} = -c_{1,3} \ a^2 \ \log \frac{\Lambda^2}{m_h^2}$$

see: Barbieri et al. PRD 76 (2007) 115008

HOW `STANDARD` THE HIGGS MUST BE ?

Large deviations from a=1 still allowed for a light Higgs

Presently <u>no</u> constraint on b,c

THE HIGGS AS A COMPOSITE PSEUDO-NG BOSON [

[Georgi & Kaplan, `80]

Motivations:

- light Higgs naturally
- contribution to EWPO from heavier resonances parametrically suppressed

$$\langle H \rangle \langle H \rangle$$

 $W^3 \qquad H \qquad B$
 ρ
 ρ

$$\Delta\epsilon_3 \equiv \hat{S} \sim \frac{m_W^2}{m_\rho^2} \sim \frac{g^2}{16\pi^2} \times \frac{16\pi^2}{g_\rho^2} \times \frac{v^2}{f^2}$$

$$\xi = \left(\frac{v}{f}\right)^2$$

$$\xi \to 0$$

[$f \to \infty$]

decoupling limit

All ρ 's become heavy and one reobtains the SM

new parameter compared to TC (fixed by dynamics)

Shifts in the Higgs couplings at $O(\xi)$

Given the σ -model Lagrangian a, b predicted in terms of ξ :

Ex: $SO(5) \rightarrow SO(4)$

$$a = \sqrt{1 - \xi}, \qquad b = (1 - 2\xi)$$

For a composite Higgs doublet the small ξ behavior is universal

[Giudice et al. JHEP 0706:045 (2007)]

$$\mathcal{L} = \frac{1}{2} (D_{\mu}H)^{\dagger} (D^{\mu}H) + c_H \xi \frac{1}{2v^2} \left[\partial_{\mu} (H^{\dagger}H) \right]^2 + \cdots$$

$$a = \left(1 - \frac{c_H \xi}{2}\right) \qquad b = (1 - 2c_H \xi)$$

HOW MUCH COMPOSITETHE pNG HIGGS CAN BE?

Ex: $SO(5) \rightarrow SO(4)$

[Agashe, RC, Pomarol, NPB 719 (2005) 165]

$$m_{\rho} = \frac{3}{8\pi} \frac{g_{\rho}v}{\sqrt{\xi}} \qquad a = \sqrt{\xi - 1}$$

A LIGHT SCALAR FAKING THE HIGGS: THE DILATON

ψ

[Goldberger et al. PRL 100 (2008) 111802]

 $= \left\{ \chi^a, \phi, \ldots \right\}$

If the EWSB sector has a spontaneously broken scale invariance the corresponding NG boson (the dilaton) can be light :

Invariance under dilatations fixes the couplings of the dilaton:

 $x \to e^{-\lambda} x \qquad \phi(x) \to \phi(xe^{\lambda}) + \lambda f_D \qquad \chi^a(x) \to \chi^a(e^{\lambda} x) \qquad \psi(x) \to e^{3\lambda/2} \psi(e^{\lambda} x)$

EWSB

sector

$$\mathcal{L} = e^{2\phi/f_D} \left[\frac{1}{2} \left(\partial_\mu \phi \right)^2 + \frac{v^2}{4} \operatorname{Tr} \left(D_\mu \Sigma^\dagger D^\mu \Sigma \right) \right] - m_i \, \bar{\psi}_{Li} \Sigma \psi_{iR} \, e^{\phi/f_D} + h.c.$$

A LIGHT SCALAR FAKING THE HIGGS: THE DILATON

[Goldberger et al. PRL 100 (2008) 111802]

If the EWSB sector has a spontaneously broken scale invariance the corresponding NG boson (the dilaton) can be light :

By setting $e^{\phi/f_D} \equiv 1 + \frac{\chi}{f_D}$ one has:

$$\mathcal{L} = \left[\frac{1}{2} \left(\partial_{\mu}\phi\right)^{2} + \frac{v^{2}}{4} \operatorname{Tr}\left(D_{\mu}\Sigma^{\dagger}D^{\mu}\Sigma\right)\right] \left(1 + \frac{\chi}{f_{D}}\right)^{2} - m_{i}\,\bar{\psi}_{Li}\Sigma\psi_{iR}\left(1 + \frac{\chi}{f_{D}}\right) + h.c.$$

same as a light composite Higgs with:

$$a^2 = b = c^2 \qquad a = \frac{v}{f_D}$$

PNGB HIGGS + DILATON

$$m_h = 120 \,\text{GeV}$$
 $m_D = 250 \,\text{GeV}$ $f_D = f/1.5$

WW SCATTERING

By the Equivalence Theorem $\chi \chi \to \chi \chi$ equal to $W_L W_L \to W_L W_L$ at large energy

$$A(\chi^+\chi^- \to \chi^+\chi^-) = \frac{1}{v^2} (s+t)$$

The Higgs contributes to the scattering

$$\mathcal{A}(\chi^+\chi^- \to \chi^+\chi^-) \simeq \frac{1}{v^2} \left[s - \underbrace{a^2 s^2}_{s - m_h^2} + (s \leftrightarrow t) \right]$$

unitarity for: a=1

$$\mathcal{A}(\chi^+\chi^- \to hh) \simeq \frac{s}{v^2}(b-a^2)$$

unitarity for: $a^2=b$

$$\mathcal{A}(\chi^+\chi^- \to \psi\bar{\psi}) \simeq \frac{m_{\psi}\sqrt{s}}{v^2} (1-ac)$$

unitarity for: a=c

• No strong $W_L W_L \rightarrow hh$ for a dilaton (a²=b)

In general a,b,c control three different sectors of the theory

 $W_L W_L \rightarrow hh$ only way to extract b

Extracting a from WW→WW scattering

$$-s + 4M_W^2 < t < -M_W^2$$

$$\sigma_{TT} \sim \frac{g^4}{8\pi} \left(\frac{1}{t_{min}} \right) \qquad \sigma_{LL} \sim \frac{(1-1)^2}{8\pi} \left(\frac{1}{2\pi} \right)$$

vvvs.

when

$$\frac{\sigma_{LL}}{\sigma_{TT}} \sim (1 - a^2)^2 \, \frac{s \, t_{min}}{M_W^4} \times \frac{1}{512} \frac{1}{(s_W^4 + c_W^4)}$$

s

 v^4

TT scattering accidentally larger than NDA expectations: onset of strong scattering delayed

Extracting a from WW->WW scattering

Cutting on events with central final W's

$$t_{min} \sim s$$

$$\frac{d\sigma_{LL\to LL}/dt}{d\sigma_{TT\to TT}/dt}\Big|_{t\sim -s/2} \sim \frac{(1-a^2)^2}{2304} \frac{s^2}{M_W^4}$$

Still numerically larger than naive expectation

Large pollution from transverse modes in hard scattering

Extracting a from WW→WW scattering

Larger luminosity for longitudinal W's makes

same as in Weizsacker-Williams
photon spectrum

$$P_{T}(z) = \frac{g_{A}^{2} + g_{V}^{2}}{4\pi^{2}} \frac{1 + (1 - z)^{2}}{2z} \log \frac{(p_{Tj}^{max})^{2}}{(1 - z)M_{W}^{2}}$$

$$P_{L}(z) = \frac{g_{A}^{2} + g_{V}^{2}}{4\pi^{2}} \frac{1 - z}{z}$$

$$M_{jj} > 500 \text{ GeV}$$

$$p_{Tj} < 120 \text{ GeV}$$

$$p_{TW} > 300 \text{ GeV}$$

 $\sigma(signal) = \sigma(a \neq 1) - \sigma(SM)$

• ~O(10) events in fully leptonic channel $W^{\pm}W^{\pm} \rightarrow l^{\pm}\nu l^{\pm}\nu$ with 100 fb⁻¹ for a=0

LHC at 14 TeV sensitive to $a^2 \lesssim 0.5$ with 100 fb⁻¹

[Giudice et al. JHEP 0706:045 (2007)]

Extracting b from WW→hh scattering

No Coulomb singularity enhancement of transverse scattering

■ Longitudinal scattering always dominating: cleaner than WW → WW

Breaking the model degeneracy

Breaking the model degeneracy

 $H_T = \sum_{i=1,2} |p_{TH_i}|$

More central Higgses (larger H_T)

Signal pure s-wave

■ Moral: extracting (a²-b) requires studying events at large m_{hh} / H_T

Problem: very few events:

			3 lep	3 leptons		2 SS leptons		4 leptons	
	# Events with 300fb^{-1}		signal	bckg.	signal	bckg.	signal	bckg.	
		$\xi = 1$	(4.9)	1.1	15.0	16.6	1.3	0.08	
	MCHM4	$\xi = 0.8$	3.3	1.2	10.1	18.3	0.9	0.14	
		$\xi = 0.5$	1.5	1.4	4.9	21.0	0.4	0.23	
	мения	$\xi = 0.8$	4.5	1.8	14.3	26.0	1.1	0.19	
	монмэ	$\xi = 0.5$	2.3	1.2	7.6	18.4	0.6	0.21	
	\mathbf{SM}	$\xi = 8$	0.2	1.7	0.8	25.4	0.05	0.37	
		A							
	Total 3	leptons ci	uts passed		Final				
# events:	2790 →	61 →	9.1 -		4.9				
	2.2%	15%		54%		[last	step for	Bckg: ~ 3	

Efficiency of `standard` cuts drastically drops for energetic (boosted) events

 $\begin{array}{ll} p_{Tj} > 30 \, {\rm GeV} & |\eta_j| < 5 & \Delta R_{jj'} > 0.7 \\ \\ p_{Tl} > 20 \, {\rm GeV} & |\eta_l| < 2.4 & \Delta R_{jl} > 0.4 & \Delta R_{ll'} > 0.2 \end{array}$

The larger m(hh), the more boosted the Higgses, the more collimated its decay products

	4 jets	3 jets (1 'fat')
No cut on m_{hh}	40%	17%
$m_{hh} > 750 \mathrm{GeV}$	36%	32%
$m_{hh} > 1500 \mathrm{GeV}$	18%	59%

These events are lost with a standard analysis

LUMINOSITY vs ENERGY UPGRADE

With a tenfold Luminosity upgrade (3 ab⁻¹) our analysis predicts:

~ 50 three-lepton events ~150 two same-sign lepton events

even with a standard strategy should be possible to extract the energy growing behavior of the signal

With a higher-energy collider one can probe larger values of m_{hh}

Luminosity upgrade as effective as a 28 TeV collider to study the signal

Full optimized analysis required to properly estimate the background

 $\frac{d\sigma}{dm_{hh}^2} = \frac{1}{m_{hh}^2} \,\hat{\sigma}(W_i W_j \to hh) \,\rho_W^{ij}(m_{hh}^2/s, Q^2)$

CONCLUSIONS

• LHC goal: Unraveling the mechanism of EWSB main question: weak or strong ?

• WW→hh only process to probe the (hhWW) coupling

LHC reach (3 σ) with 300 fb⁻¹: $\xi \sim 1$

3 ab⁻¹: $\xi \sim 0.5$

- Model dependency due to the trilinear coupling important
- New strategy (e.g. using jet substructure) required to study events at large m_{hh}
- Additional channels to be studied (ex: $hh \rightarrow bb\tau\tau$)