GUTs and Flavour: $SU(5) imes S_4$ as Example

C. Hagedorn

hagedorn@sissa.it

SISSA/ISAS and INFN, Sezione di Trieste, Italy

H/King/Luhn arXiv:1003.4249 (to be published in JHEP)

Outline

- Observations: fermion masses and mixings
- **D** Basics of $SU(5) \times S_4$ model
- Main results of the model
- Different aspects of the model
- Conclusions & Outlook

		Mass at M_Z	in units	of $m_t(M_Z)$	
	u	$(1.7\pm0.4){ m MeV}$		λ^8	$\lambda = \theta_{\alpha} \sim 0.22$
	С	$(0.62\pm0.03){\rm GeV}$		λ^4	$\lambda \equiv 0_C \sim 0.22$
	t	$(171 \pm 3) \mathrm{GeV}$		1	_
		Mass at M_Z	in units	s of $m_b(M_Z)$)
	\overline{d}	$(3.0\pm0.6){ m MeV}$		λ^4	
	S	$(54\pm8){ m MeV}$		λ^2	
	<u>b</u>	$(2.87\pm0.03){\rm GeV}$		1	
		Mas	s at M_Z	in units of	$m_{\tau}(M_Z)$
e	(0.486)	5570161 ± 0.00000004	42) MeV	λ^{4-1}	÷5
μ	(102)	2.7181359 ± 0.000009	$(92)\mathrm{MeV}$	λ^2	2
au		$1.74624_{-0.00}^{+0.00}$	$^{020}_{019}{ m GeV}$	1	

- Mild hierarchy among light neutrino masses
 - Two mass squared differences Δm^2_{21} and $|\Delta m^2_{31}|$ are known (2 σ)

 $\Delta m_{21}^2 = (7.59^{+0.44}_{-0.37}) \cdot 10^{-5} \text{ eV}^2 \text{ and } |\Delta m_{31}^2| = (2.40^{+0.24}_{-0.22}) \cdot 10^{-3} \text{ eV}^2$

Solution Cosmological data give upper bound on m_0

$$\sum m_i \lesssim 0.7 \text{ eV} \quad (2\sigma)$$

• The bounds on m_{β} and $|m_{ee}|$ also constrain m_0

 $m_{\beta} \le 2.2 \,\mathrm{eV}$ and $|m_{ee}| \le (0.2...1) \,\mathrm{eV}$

Normal (NH) & inverted hierarchy (IH) still allowed

The mixing pattern in the lepton sector is very peculiar

 $\begin{aligned} \sin^2(\theta_{12}^l) &= 0.318^{+0.042}_{-0.028} , \quad \sin^2(\theta_{23}^l) = 0.50^{+0.13}_{-0.11} \quad \text{and} \quad \sin^2(\theta_{13}^l) \leq 0.039 \\ \theta_{12}^l &= (34.3^{+2.5}_{-1.7})^\circ , \quad \theta_{23}^l = (45.0^{+7.5}_{-6.4})^\circ \quad \text{and} \quad \theta_{13}^l \leq 11.4^\circ \quad (2\,\sigma) \end{aligned}$

compare to quark sector $\theta_{12}^q \approx 13^\circ$, $\theta_{23}^q \approx 2.4^\circ$ and $\theta_{13}^q \approx 0.21^\circ$

The mixing pattern in the lepton sector is very peculiar

 $\sin^{2}(\theta_{12}^{l}) = 0.318^{+0.042}_{-0.028} , \quad \sin^{2}(\theta_{23}^{l}) = 0.50^{+0.13}_{-0.11} \text{ and } \sin^{2}(\theta_{13}^{l}) \leq 0.039$ $\theta_{12}^{l} = (34.3^{+2.5}_{-1.7})^{\circ} , \quad \theta_{23}^{l} = (45.0^{+7.5}_{-6.4})^{\circ} \text{ and } \theta_{13}^{l} \leq 11.4^{\circ} \quad (2\sigma)$

compare to quark sector $\theta_{12}^q \approx 13^\circ$, $\theta_{23}^q \approx 2.4^\circ$ and $\theta_{13}^q \approx 0.21^\circ$ Special mixing patterns

• $\mu \tau$ symmetry

$$\sin^{2}(\theta_{23}^{l}) = \frac{1}{2}, \quad \sin^{2}(\theta_{13}^{l}) = 0$$
$$\Rightarrow U_{MNS} = \begin{pmatrix} \cos(\theta_{12}^{l}) & \sin(\theta_{12}^{l}) & 0\\ -\frac{\sin(\theta_{12}^{l})}{\sqrt{2}} & \frac{\cos(\theta_{12}^{l})}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{\sin(\theta_{12}^{l})}{\sqrt{2}} & -\frac{\cos(\theta_{12}^{l})}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

The mixing pattern in the lepton sector is very peculiar

 $\sin^2(\theta_{12}^l) = 0.318^{+0.042}_{-0.028} , \quad \sin^2(\theta_{23}^l) = 0.50^{+0.13}_{-0.11} \quad \text{and} \quad \sin^2(\theta_{13}^l) \le 0.039$ $\theta_{12}^l = (34.3^{+2.5}_{-1.7})^\circ , \quad \theta_{23}^l = (45.0^{+7.5}_{-6.4})^\circ \quad \text{and} \quad \theta_{13}^l \le 11.4^\circ \quad (2\,\sigma)$

compare to quark sector $\theta_{12}^q \approx 13^\circ$, $\theta_{23}^q \approx 2.4^\circ$ and $\theta_{13}^q \approx 0.21^\circ$

- Special mixing patterns
 - Tri-bimaximal (TB) mixing

$$\sin^2(\theta_{12}^l) = \frac{1}{3} , \quad \sin^2(\theta_{23}^l) = \frac{1}{2} , \quad \sin^2(\theta_{13}^l) = 0$$
$$\Rightarrow U_{MNS} = \begin{pmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} & 0\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}}\\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Basic Setup

- **SUSY** SU(5) Grand Unified Theory in 4 dimensions
- **\blacksquare** Effective theory with cutoff M for flavour dynamics
- **Flavour symmetry is** S_4
- \blacktriangleright $F \sim (\overline{\mathbf{5}}, \mathbf{3})$ and $N \sim (\mathbf{1}, \mathbf{3})$ for TB mixing
- \blacksquare $T_3 \sim (\mathbf{10}, \mathbf{1})$ and $T \sim (\mathbf{10}, \mathbf{2})$ for top quark mass
- **Flavons (gauge singlets) break** S_4 spontaneously
- Additional (global) U(1) symmetry for forbidding unwanted operators
- $\ \ \, {\rm GUT \ Higgs \ fields \ are \ } H_5 \sim ({\bf 5},{\bf 1}), \ H_{\overline{5}} \sim (\overline{{\bf 5}},{\bf 1}) \ {\rm and} \ H_{\overline{45}} \sim (\overline{{\bf 45}},{\bf 1}) \$

Main Results

- TB mixing encoded in right-handed neutrino Majorana mass terms
- Large top quark mass through $T + T_3 \sim 2 + 1$ under S₄
- Quark mixings arise from down quark sector
- GST and GJ relations are achieved through specific high energy completion
- Corrections from charged lepton sector relevant for lepton mixings, lead to sum rules

Group Theory of S_4

- Solution S_4 is the permutation group of four distinct objects, isomorphic to the symmetry group O of a regular octahedron, with order 24
- Irred. reps. are 1, 1', 2, 3 and 3'
- \blacksquare Generators S, T and U fulfill

$$S^{2} = 1$$
, $T^{3} = 1$, $U^{2} = 1$,
 $(ST)^{3} = 1$, $(SU)^{2} = 1$, $(TU)^{2} = 1$, $(STU)^{4} = 1$

Group Theory of S_4

- S₄ is the permutation group of four distinct objects, isomorphic to the symmetry group O of a regular octahedron, with order 24
- Irred. reps. are 1, 1', 2, 3 and 3'
- ${f 1}: \quad S=1 \;, \qquad \qquad T=1 \;, \qquad \qquad U=1 \;,$
- $\begin{aligned} \mathbf{1}': \quad S = 1 , & T = 1 , & U = -1 , \\ \mathbf{2}: \quad S = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} , & T = \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix} , & U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \\ \mathbf{3}: \quad S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1 \end{pmatrix} , & T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix} , & U = -\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} , \\ \mathbf{3}': \quad S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ 2 & 2 & -1 \\ 2 & 2 & -1 \end{pmatrix} , & T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega^2 & 0 \\ 0 & \omega^2 & 0 \\ 0 & 0 & \omega \end{pmatrix} , & U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} . \end{aligned}$

TB Mixing in Neutrino Sector

Field	F	N	H_5	$\Phi^{\nu}_{3'}$	Φ_2^{ν}	Φ_1^{ν}
SU(5)	5	1	5	1	1	1
S_4	3	3	1	3'	2	1
U(1)	y	-y	0	2y	2y	2y
U(1)	4	-4	0	8	8	8

Yukawas at leading order

$$y_D F N H_5 + \alpha N N \Phi_1^{\nu} + \beta N N \Phi_2^{\nu} + \gamma N N \Phi_{3'}^{\nu}$$

For vacuum

 $\langle \Phi_{3'}^{\nu} \rangle \propto (1,1,1)^t , \qquad \langle \Phi_2^{\nu} \rangle \propto (1,1)^t , \qquad \langle \Phi_1^{\nu} \rangle \neq 0$

which leaves invariant the group generated by S and U in the neutrino sector \ldots

TB Mixing in Neutrino Sector

Field	F	N	H_5	$\Phi^{\nu}_{3'}$	Φ_2^{ν}	Φ_1^{ν}
SU(5)	5	1	5	1	1	1
S_4	3	3	1	3'	2	1
U(1)	y	-y	0	2y	2y	2y
U(1)	4	-4	0	8	8	8

Yukawas at leading order

$$y_D F N H_5 + \alpha N N \Phi_1^{\nu} + \beta N N \Phi_2^{\nu} + \gamma N N \Phi_{3'}^{\nu}$$

... we get

$$M_{D} = y_{D} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} v_{u} \text{ and } M_{R} = \begin{pmatrix} \alpha \varphi_{1}^{\nu} + 2\gamma \varphi_{3'}^{\nu} & \beta \varphi_{2}^{\nu} - \gamma \varphi_{3'}^{\nu} & \beta \varphi_{2}^{\nu} - \gamma \varphi_{3'}^{\nu} \\ \beta \varphi_{2}^{\nu} - \gamma \varphi_{3'}^{\nu} & \beta \varphi_{2}^{\nu} + 2\gamma \varphi_{3'}^{\nu} & \alpha \varphi_{1}^{\nu} - \gamma \varphi_{3'}^{\nu} \\ \beta \varphi_{2}^{\nu} - \gamma \varphi_{3'}^{\nu} & \alpha \varphi_{1}^{\nu} - \gamma \varphi_{3'}^{\nu} & \beta \varphi_{2}^{\nu} + 2\gamma \varphi_{3'}^{\nu} \end{pmatrix}$$

Up Quarks

Field	T_3	T	H_5	Φ_2^u	$\widetilde{\Phi}_2^u$
SU(5)	10	10	5	1	1
S_4	1	2	1	2	2
U(1)	0	x	0	-2x	0
U(1)	0	5	0	-10	0

Yukawas at leading order

$$T_3T_3H_5+\frac{1}{M}TT\Phi_2^uH_5+\frac{1}{M^2}TT\Phi_2^u\widetilde{\Phi}_2^uH_5$$

For

$$\langle \Phi_2^u \rangle \ , \ \langle \widetilde{\Phi}_2^u \rangle \ \propto (0,1)^t \ \text{ and } \ \langle \Phi_2^u \rangle / M \ , \ \langle \widetilde{\Phi}_2^u \rangle / M \approx \lambda^4$$

we get

$$M_u \approx \operatorname{diag}(\varphi_2^u \widetilde{\varphi}_2^u / M^2, \varphi_2^u / M, 1) v_u \approx \operatorname{diag}(\lambda^8, \lambda^4, 1) v_u$$

Down Quarks & Charged Leptons

Field	T_3	T	F	$H_{\overline{5}}$	$H_{\overline{45}}$	Φ_3^d	$\widetilde{\Phi}^d_3$	Φ_2^d
SU(5)	10	10	5	5	$\overline{45}$	1	1	1
S_4	1	2	3	1	1	3	3	2
U(1)	0	x	y	0	z	-y	-x-y-2z	z
U(1)	0	5	4	0	1	-4	-11	1

Yukawas at leading order

$$\frac{1}{M}FT_{3}\Phi_{3}^{d}H_{\overline{5}} + \frac{1}{M^{2}}(F\widetilde{\Phi}_{3}^{d})_{1}(T\Phi_{2}^{d})_{1}H_{\overline{45}} + \frac{1}{M^{3}}(F\Phi_{2}^{d}\Phi_{2}^{d})_{3}(T\widetilde{\Phi}_{3}^{d})_{3}H_{\overline{5}}$$

For vacuum alignment

$$\langle \Phi_3^d \rangle \propto (0, 1, 0)^t$$
, $\langle \widetilde{\Phi}_3^d \rangle \propto (0, -1, 1)^t$, $\langle \Phi_2^d \rangle \propto (1, 0)^t$

and

$$\langle \Phi_3^d \rangle / M \approx \lambda^2 , \ \langle \widetilde{\Phi}_3^d \rangle / M \approx \lambda^3 , \ \langle \Phi_2^d \rangle / M \approx \lambda$$

GJ and GST Relations

... we find GJ relations

 $m_d pprox 3 \, m_e$ and $m_s pprox m_\mu/3$ and $m_b pprox m_ au$

and hierarchies

 $m_d: m_s: m_b \approx \lambda^4: \lambda^2: 1$ with $m_b \approx m_\tau \approx \lambda^2 v_d$

Since $M_u \propto \text{diag}$ we get also the GST relation $\tan \theta_{12}^q \approx \sqrt{m_d/m_s}$

GJ and GST Relations

... we find GJ relations

 $m_d \approx 3 \, m_e$ and $m_s \approx m_\mu/3$ and $m_b \approx m_\tau$

and hierarchies

$$m_d: m_s: m_b \approx \lambda^4: \lambda^2: 1$$
 with $m_b \approx m_\tau \approx \lambda^2 v_d$

Note for $\frac{1}{M^2} (F \widetilde{\Phi}_3^d)_1 (T \Phi_2^d)_1 H_{\overline{45}}$ specified high energy completion is needed

GJ and GST Relations

Since $M_u \propto$ diag we get also the GST relation $\tan \theta_{12}^q \approx \sqrt{m_d/m_s}$

Note for $\frac{1}{M^3}(F\Phi_2^d\Phi_2^d)_3(T\widetilde{\Phi}_3^d)_3H_{\overline{5}}$ specified high energy completion is needed

Lepton Mixings: Sum Rules

Mixing in neutrino sector (up to corrections of order λ^4)

$$\sin^2(\theta_{12}^{\nu}) \approx \frac{1}{3}$$
, $\sin^2(\theta_{23}^{\nu}) \approx \frac{1}{2}$, $\sin^2(\theta_{13}^{\nu}) \approx 0$

Mixing in charged lepton sector

$$\sin(\theta_{13}^e) \approx \lambda^4 , \quad \tan(\theta_{12}^e) \approx \tan(\theta_{12}^q)/3 , \quad \tan(\theta_{23}^e) \approx \lambda^4$$

$$\Downarrow$$

Lepton mixings obey sum rules

$$\sin^2(\theta_{12}^l) \approx \frac{1}{3} \left(1 + 2\sqrt{2}\sin(\theta_{13}^l)\cos(\delta^l) \right) , \quad \sin(\theta_{13}^l) \approx \tan(\theta_{12}^q)/(3\sqrt{2})$$

and for
$$\sin(\theta_{13}^l) \equiv \frac{r}{\sqrt{2}} \text{ and } \sin(\theta_{23}^l) \equiv \frac{1}{\sqrt{2}}(1+a) \text{ holds: } a \approx -r^2/4 .$$

Conclusions & Outlook

- $SU(5) \times S_4$ a minimal model for TB mixing in GUT context
- Nearly TB mixing in neutrino sector through non-trivial S_4 breaking
- Large top quark mass due to $T + T_3 \sim 2 + 1$
- Incorporation of GST and GJ relations in the model
- Particular choice of U(1) charges x, y and z allows vacuum alignment to be stable under NLO corrections and very small contributions to fermion masses and mixings from NLO terms

Not discussed

- GUT Higgs (super-)potential
- RG and threshold effects on fermion masses and mixings
- Anomaly constraints from U(1)
- Phenomenology related to sfermions

Thank you.

Back up

Messengers

Field	Σ	Σ^c	Δ	Δ^c	Υ	Υ^c	Ω	Ω^c	Θ	Θ^c
SU(5)	$\overline{10}$	10	5	5	5	$\overline{5}$	$\overline{5}$	5	5	5
S_4	1	1	1	1	2	2	3	3	3	3
U(1)	-x-z	x + z	x+2z	-x-2z	x	-x	y+2z	-y-2z	y+z	-y-z
U(1)	-6	6	7	-7	5	-5	6	-6	5	-5