A Non Standard Supersymmetric Spectrum A bottom-up viewpoint

Riccardo Barbieri Planck 2010 CERN, 31/05-4/06, 2010

B, Bertuzzo, Farina, Lodone, Pappadopulo

2 methodological questions

1. Is it useful to start with a praise of the MSSM?

2. Is it useful to consider significant variations of the MSSM?

EWPT ↑↓
unification ↓
no s-particle so far ↑
no Higgs boson ↑
no flavour signal ↑

1. Motivations: a matter of naturalness, once again (supersymmetry could be there and we might never know)

Related problems? Enough to try to go beyond the MSSM?

A Non Standard Supersymmetric Spectrum

Motivated? If yes, can it be naturally implemented? Which consequences?

2. Hierarchical s-fermion masses and flavour physics: a summary

1. With no degeneracy, nor alignment $m_{\tilde{f}_{1,2}} \text{ in the hundreds of TeV}$

Dine, Kagan, Samuel Pomarol, Tommasini Cohen, Kaplan, Nelson

Giudice, Nardecchia, Romanino

2. Assume $\delta_{12}^{LL} \approx \frac{|m_1^2 - m_2^2|}{(m_1^2 + m_2^2)/2} \approx \lambda = 0.22$ and $\delta^{LL} \approx \delta^{RR} >> \delta^{LR}$ Real $\Delta S=2$ $m_{\tilde{q}_{1,2}} \gtrsim 18 \ TeV$ Im $\Delta S=2$, $\sin \phi_{CP} \approx 0.3$ $m_{\tilde{q}_{1,2}} \gtrsim 120 \ TeV$ 3. As in 2, but with $\delta^{LL} >> \delta^{RR}$, δ^{LR} (or $\delta^{RR} >> \delta^{LL}$, δ^{LR}) $\Delta C=2$ $m_{\tilde{q}_{1,2}} \gtrsim 3 \ TeV$ Im $\Delta S=2$, $\sin \phi_{CP} \approx 0.3$ $m_{\tilde{q}_{1,2}} \gtrsim 12 \ TeV$ (EDM's give somewhat weaker constraints)

> $\Rightarrow m_{\tilde{f}_{1,2}} \gtrsim 20 \div 30 \ TeV \quad m_{\tilde{f}_3} \approx 0.5 \div 1 \ TeV$ may be a way to solve the flavour problem

3. Supersymmetry without a light Higgs boson Want to keep the success of the EWPT \Rightarrow Effective theories not enough

$$\star \Delta f = \lambda S H_1 H_2 \qquad \wedge$$
$$m_h^2 \le m_Z^2 (\cos^2 2\beta + \frac{2\lambda^2}{g^2 + g'^2} \sin^2 2\beta)$$

Batra, Delgado, Kaplan, Tait Harnik, Kribs, Larson, Murayama B, Hall, Nomura, Rychkov is the scale at which some coupling gets semi-perturbative (what happens above Λ not our concern, more later) In gauge extensions $M_{\phi,\Sigma}/M_X$ maximized consistently with naturalness oh higher vev

Naturalness bounds

Colour/em conservation

Arkani-Hamed, Murayama

ElectroWeak Precision Tests in λ SUSY $\lambda(G_F^{-1/2}) \approx 2$

S and T from Higgs's

one loop effects but 0.3 $\Lambda T \propto \lambda^4$ 0.25 350 0.2 tan β Qv 6⁰ 0.15 95% CL 0.1 700 $\lambda \uparrow \Rightarrow m_h \uparrow$ 0.05 compensated by $\Delta T \uparrow$ 1.5 100 -0.05 m, (SM) t=1 -0.1 350 0.05 -0.050.15 -0.10.1 0.2 0 S

B, Hall, Nomura, Rychkov

What about unification?

It depends on what happens at $M\gtrsim 10^4 TeV$

At $M \approx 10^4 TeV$: $g_1 \approx 0.5, g_2 \approx 0.7, g_3 \approx 0.85$

4. Phenomenological consequences

* gluino pair production and decays

\star a largely unconventional Higgs sector

Cavicchia, Franceschini, Rychkov

* Dark Matter: relic abundance and detection affected

4.1 Gluino pair production and decays

More in general $m_{\tilde{g}} = 400 \div 1800 \ GeV$ $m_{\tilde{t}_1} < m_{\tilde{t}_2} < 800 \ GeV$ $\theta_t = 0 \div \pi/2$ $\mu = 100 \div 400 \ GeV$ $M_1, M_2 = 100 \div 500 \ GeV$ $m_{\tilde{b}_R} \lesssim 600 \ GeV$ (s-lepton masses almost always unimportant)

3 relevant semi-inclusive BR's

$$\begin{split} \tilde{g} &\to t\bar{t}\chi \\ \tilde{g} &\to t\bar{b}\chi \ (\bar{t}b\chi) \\ \tilde{g} &\to b\bar{b}\chi \end{split}$$

with $B_{tt} + 2B_{tb} + B_{bb} \approx 1$ and $\chi = \chi_{LSP} + W, Z's$

- \Rightarrow multi top events
- \Rightarrow spherical events
- \Rightarrow 4 b's always, sometime only

4.2 A largely unconventional Higgs sector

 $h \rightarrow ZZ \rightarrow l^+l^- \ l^+l^-$ Easy and very much non-susy like $H \rightarrow hh \rightarrow 4V \rightarrow l^+l^- 6j$ $BR \propto \lambda^2$ much larger than normal $A \rightarrow hZ \rightarrow VV \ Z \rightarrow l^+l^- 4j$

4.3 Dark Matter: relic abundance and detection

Relic abundance:

A strong effect of the s-channel heavier Higgs exchange No "well-temperament"

4.3 Dark Matter: relic abundance and detection

dark blu: CDMS now light blu: "XENON100"

Conclusions

* The Higgs boson and the flavour problems may be related and suggest considering a Non Standard Supersymmetric Spectrum where:

$$m_h = 200 \div 250 \ GeV$$
$$m_{\tilde{f}_{1,2}} \gtrsim 20 \div 30 \ TeV >> m_{\tilde{f}_3}$$

* Naturally possible at least in λ Susy

* Phenomenology (peculiar):

Direct Detection affected

* Flavour signals from the 1–2/3 effect (and low $\, aneta \,$)

Salvioni, Strumia, Villadoro, Zwirner

4.3 Dark Matter: relic abundance and detection

Relic abundance:

A strong effect of the s-channel heavier Higgs exchange No need of "well-temperament"

