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Motivation

Effective theory approach to string compactifications

Type II on Calabi-Yau give N=2 supergravity in 4D → concentrate on
global N=2 supersymmetry

D-branes break half of supersymmetry which is then nonlinearly
realised on their worldvolume

Universal Hypermultiplet has Heisenberg symmetry preserved in string
perturbation theory

Aim

Description of D-branes coupled to Universal Hypermultiplet (UH) with
off-shell global N = 2 supersymmetry: one linearly realised and one
nonlinearly.
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Results

Global N = 2 supersymmetry and Heisenberg symmetry uniquely
determine the form of the theory

Generalized the derivation of the DBI from constrained superfields to
the coupling to the dilaton (single-tensor) with one linear and one
nonlinear supersymmetry

Nonlinear N = 2 vector multiplet coupled to full single-tensor: no
orientifold truncation

New super-Higgs without gravity

Low energy effective theory description of string theory compactified
on rigid Calabi-Yau including perturbative corrections
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D-brane effective action

D-branes have a gauge field living on their worldvolume (open
strings).

The effective theory is the Born-Infeld. [Fradkin-Tseytlin 1985]

The coupling of the worldvolume fields to bulk fields (closed strings)
is (for a space-filling D3-brane in a fixed, flat background)

SD3 = −TD3

∫
d4ξ e−φ

√
− det (ηµν + Bµν + Fµν)

+

∫ (
1

2
C0(B2 + F )2 + C2 ∧ (B2 + F ) + C4

)
[Leigh 1989]

where the second line is the topological term with the coupling to RR
fields.
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Universal hypermutiplet in string compactifications

At string tree-level the UH is described by a NLSM with target space
SU(2, 1)/[SU(2)× U(1)], which has 8 isometries
[Cecotti, Ferrara, Girardello, 1989]

String loop corrections yield a one-parameter deformation
proportional to the Euler characteristic χE = 2(h1,1 − h2,1), breaking
SU(2, 1) down to Heisenberg (3 isometries)

Metric of target manifold (quaternion-Kähler) with Heisenberg symmetry:

ds2
local =

V − χ

(V + χ)2

(
dV 2

4V
+ dη2 + dϕ2

)
+

4V

(V + χ)2(V − χ)

(
dτ+η dϕ

)2
,

with V + χ = e−2φ4 , ϕ ↔ Cµν , τ ↔ Bµν , η = C0 and χ ∝ χE .
[Antoniadis, Minasian, Theisen, Vanhove 2003]
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Heisenberg algebra

In IIB we have two anti-symmetric tensors Bµν (NS-NS) and Cµν (R-R)
and a R-R scalar C0 with gauge and shift symmetries

δBµν = 2∂[µΛν] , δCµν = 2∂[µΛ̃ν] + λBµν , δC0 = λ,

which realise the Heisenberg algebra

[δ1, δ2]Cµν = 2∂[µλ2Λ1ν] − 2∂[µλ1Λ2ν] .

Can easily prove that there is a unique theory of a hypermultiplet in
global N = 2 with Heisenberg symmetry

Precise relation to the string-loop corrected UH in the
gravity-decoupling limit determines the identification of fields
[AADT, 1005.0323]
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The constrained vector multiplet
Usual N = 2 vector superfield is

W = X +
√

2i θ̃αWα −
1

4
θ̃θ̃DDX

We impose a constraint on the N = 2 vector superfield W
[Roček-Tseytlin 1998]

W2
nl =

(
W − 1

2κ
θ̃θ̃

)2

= W2 − 1

κ
θ̃θ̃W = 0

In terms of N = 1 superfields the θ̃θ̃ component is

WW − 1

2
XDDX =

1

κ
X

Need to deform the 2nd SUSY transformation of Wα

Gaugino transforms as a goldstino.

Solution of the constraint X (WW ) contains the Born-Infeld
[Bagger-Galperin 1996]
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Hypermultiplet as a single-tensor

Usual description of single-tensor in terms of L (linear) and Φ (chiral)

L contains ∂[µBνρ], χα contains Bµν , with L = Dαχα − D α̇χα̇

N = 2 supersymmetrisation of δBµν = ∂[µΛν] requires the
introduction of another chiral superfield Y containing a 4-form

We can construct a chiral N = 2 superfield

Y = Y +
√

2θ̃αχα − θ̃θ̃

[
i

2
Φ +

1

4
DDY

]
N = 2 gauge variation is

δY = Ŵ
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Dilaton-Brane coupling and DBI

Take as Lagrangian [AADT, 0911.5215]

L =

∫
d2θd2θ̃ iYWnl + c.c. + LST ,kin

After integration of auxiliary field in Wα the bosonic Lagrangian is

LDBI ,bos. = Re φ
4κ

[
1−

√
1 + C2

2(Re φ)2

√
− det(ηµν + 2

√
2κFµν)

]
+ εµνρσ

(κ

4
Im φFµνFρσ −

1

4
bµνFρσ +

1

24κ
Cµνρσ

)
We recovered the DBI action with

field dependent coefficient in front of the square root generated by
integration of auxiliary field

Full topological term

Invariance under non-linearly realized 2nd SUSY
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Analysis of the vacuum

: super-Higgs without gravity

There is a scalar potential

V (C ,Re φ) =
Re φ

4κ

[√
1 +

C 2

2(Re φ)2
− 1

]

Im φ is a flat direction.

SUSY vacuum at 〈C 〉 = 0, for any value of Re φ.

Properties of SUSY vacuum:

φ is massless

C is massive m2
C = 1

4κ〈Re φ〉 , same mass as the vector

Partial breaking of supersymmetry N = 2 to N = 1

Gaugino transforms as a goldstino, but is not massless

The mixing term χλ gave a mass to the gaugino, but 2nd SUSY
preserved since its variation is canceled by the variation of the 4-form.
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