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See-saw
With the degrees of freedom of the SM 

ν masses parametrized by Weinberg d = 5 effective operator

In the basis with diagonal charged leptons

y describes the flavour structure 

Λ signals the appearance of new physics 

Only 3 ways of producing the Weinberg operator at tree-level*

by exchange of 3 types of heavy particles 
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See-saw
fermion singlet S = (1, 1, 0)  TYPE I SEESAW 

boson weak triplet ∆ = (1, 3, 2) TYPE II SEESAW 

fermion weak triplet T = (1, 3, 0) TYPE III SEESAW 
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Minkowski, PLB67 (1977) 
Gell-Mann, Ramond, Slansky, Rev. Mod. Phys. 50 (1978)
Glashow, NATO Adv. Study Inst. Ser. B Phys. 59 (1979)
Yanagida, Prog. Theo. Phys. 64 (1980)
Mohapatra and G. Senjanovic, PRL44 (1980)
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boson weak triplet ∆ = (1, 3, 2) TYPE II SEESAW
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Quite well studied

Lazarides, Magg, Wetterich;
Magg, Wetterich; Mohapatra, Senjanović, 80
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Testable See-saw
Neutrinoless double beta - probes the Weinberg operator 
(however, also other NP contributions are possible)

Integrating out heavy mediators produces dim-6 operators - 
suppressed by the same scale Λ

Generically, GUT models predict Λ ≤ ΛGUT

Difficult to probe the origin of the mass operator directly at 
a collider

Tiny effects due to dim-6 operator contributions

decouple faster than dim-5

c.f. Mohapatra, 
Senjanovic,
PRD23 (1981)
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Testable See-saw
TeV - scale see-saw can be probed

Direct production of mediators at the LHC

LFV effects at low energies

Under what conditions?

Light mediators -> tiny Yukawa eigenvalues

Need other (gauge) couplings for efficient production

Type II or III

Large LFV effects typically require some fine-tuning but are possible

UPMNS non-unitary in type I, III

Charged LFV processes at tree level in type III

del Aguila, Aguilar-Saavedra, Pittau, hep-ph/0703261
Franceschini, Hambye, Strumia, 0805.1613
del Aguila, Aguilar-Saavedra, 0808.2468
Arhrib et al., 0904.2390

Abada et al., 0707.4058
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Arhrib, Benbrik and Chen, 0903.1553
J.F.K. & Nemevsek, 0908.3451

Antusch et al. hep-ph/0607020



General parametrization of 
“minimal” see-saw models

Consider type III (two triplets) and mixed I+III (singlet and triplet) scenarios

The lightest neutrino is massless and there is only one physical Majorana phase

Ibarra-Ross parameterization applies (e.g. for inverted hierarchy):

The size of the Yukawa couplings determined by single complex parameter z

Increases exponentially with Im(z) (Re(z) becomes irrelevant as Im(z)>>1)

LFV effects can become visible due to possible cancellations 

The higher the seesaw scale, the more severe fine-tuning is needed

Measuring lightest mediator decays constrains z, θ13, phases δ, Φ
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Diagonalization of the neutral and charged lepton mass matrices

produces mixing of chiral and vector-like fermions 

alters interactions with W, Z (fi=(e,μ,τ,T-), fj’=(ν1,ν2,ν3,T0,S))

In minimal models all effects predicted and correlated in terms of (mT, mS, Im(z))

The most stringent bound fixes all other low-energy phenomenology for all lepton 
families

Low-energy 
phenomenology

Antusch et al. hep-ph/0607020
Abada et al., 0707.4058
C. Biggio, 0806.2558
He & Oh, 0902.4082 
Arhrib, Benbrik and Chen, 0903.1553
J.F.K. & Nemevsek, 0908.3451

Using such a convention, we can write down the W and Z couplings in a
unified way with (PR,L = (1± γ5)/2)

Lint = e f i /Afi + (g f i /W
−
(LW PL + RW PR)ijf

�
j + h.c.) (26)

+
g

cw
f i /Z(LZPL + RZPR)ijfj +

g

cw
f
�
i /Z(L�ZPL + R�ZPR)ijf

�
j+ (27)

+ φ−f i(L
φPL + RφPR)ijf

�
j − φ+f

�
j

�
Rφ∗PR + Lφ∗PR

�
ij

fi (28)

+ φ0f i

�
L0PL + R0PR

�
fj + hf i

�
LhPL + RhPR

�
fj. (29)

with the following gauge

LW
ij = U−∗

αi U0
αj/
√

2 + U−∗
βi U0

βj, RW
ij = U+∗

βi U0∗
βj , (30)

LZ
ij = (s2

w − 1/2)U−∗
αi U−

αj − c2
wU−∗

βi U−
βj, RZ

ij = s2
wU+∗

αi U+
αj − c2

wU+∗
βi U+

βj, (31)

L�Z
ij = −U0∗

αi U
0
αj/2, R�Z

ij = 0. (32)

and would-be-Goldstone couplings

Lφ
ij = −yαα�

� U+∗
αi U0

α�j, (33)

Rφ
ij =

�
yβ−nT α

T (U−
αiU

0
βj −

√
2U−

βiU
0
αj)− yγ−nT−nSα

S U−
αiU

0
γj

�∗
, (34)

L0
ij = − 1√

2
yαα�

� U+∗
αi U−

α�j + yβ−nT α
T U+∗

βi U−
αj, (35)

R0
ij =

1√
2
yαα�∗

� U−∗
αi U+

α�j − yβ−nT α∗
T U−∗

αi U+
βj. (36)

In the notation above, we assume that repeated indices are always summed.
The indices α, α� run over the light families from 1 to 3, β runs over the
number of triplets from 4 to 3 + nT , while γ is the singlet index going from
4 + nT to 3 + nT + nS. When the additional particles are considered, the
mass matrices in Eq.(20) have to be extended.

A couple of features of the model are noteworthy. While the photon
vertex remains universal at the tree-level, the Z vertex now receives off-
diagonal entries. Also, the right-handed couplings are now present, however
they are allways suppressed by the mass of the light charged fermions m�/m2

T

which can be seen from the expansion of U+ in Eq.(22). Notice that the SM
limits are easily obtained, by either sending yT,S → 0 and/or mT,S →∞. In
this case, the mixing matrices become diagonal and the SM expressions are
recovered.
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Tree-level Z-mediated LFV
LFV lepton decays: μ->3e, τ->3μ, τ-
>eeμ, τ->μμe

μ-e conversion in nuclei

LFV semileptonic tau decays: τ->h0e, 
τ->h0μ, (h0=π0,η(‘),ϕ)

Leptonic Z decay width at LEP: Z->ll’

Tree-level LFU violation in 
charged currents:     

GF determination from muon lifetime

At low energies: (h->μν)/(h->eν), (τ-
>hν)/(h->eν), (τ->hν)/(h->μν), (h=π,K)

At colliders: (W->lν)/(W->l’ν)

Loop-induced 
LFV: μ->eγ, τ->eγ, τ->μγ

Anomalous lepton magnetic moments: 
(g-2)μ



Bounds
The strictest bound on the µeZ coupling is obtained by the µ-e 
conversion in a nucleus

Tree-level Z exchange dominates

Im(z ) < 7.5(7.1) for one triplet and one singlet [normal 
(inverted) hierarchy at mS=mT=100GeV]

Im(z ) < 7.1(6.7) for two triplets

Mild dependence on θ13 and the unknown phases (Φ)

bounds obtained by varying in allowed ranges

Brµe = Γconv./Γcapture;
BrAu

µe <7×10−13 @ 90% CL

BrT i
µe<4.3×10−12 @ 90% CL

SINDRUM II, 
PLB317 (1993); 
Eur.Phys.J. C47 (2006); 

Kitano, Koike & Okada, hep-ph/0203110
J.F.K. & Nemevsek, 0908.3451|LZ

12|2 + |RZ
12|2 < 10−15



Bounds
Comparison of bounds:

Differences between normal/inverted hierarchy and III vs I+III 
scenarios not crucial (in the minimal models)

Mild dependence on the Majorana phase (θ13, δ irrelevant)

Im(z) sensitivity logarithmic!

Process Bound on Im(z) (mT=100GeV)
μ-e conv. <7

l->3l’ <8
l->l’γ <10
τ->hl <11
Z->ll’ <12
LFU <12

τ -> 3 l give the best
tau-e and tau-μ bounds* Radiative LFV decays 

are suppressed

*Relevant for non-minimal models

More constrained at 
low energies than direct 

W measurements

Other observables 
studied, found not 

relevant (h->ll’, (g-2)μ,...)



Production and detection of 
lightest triplet at colliders

Searches for heavy charged fermions at LEP constrain mT > 100 GeV

In minimal models, triplet life-time bounded from above:

τT < 0.5 mm (200GeV/mT)2  (for NH; 5.6 times shorter in IH)

Possibly displaced (secondary) vertices, no charged tracks

Drell-Yan type production: 

 

Arhrib et al., 
0904.2390
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FIG. 14: The allowed values of the triplet lifetime and the electron normalized branching fraction

in the NH case with θ13 = 0, MT = 200 GeV.

V. HEAVY LEPTON SIGNALS AT HADRON COLLIDERS

Based on the model discussed in section II, the leading production of the heavy triplet

leptons at a hadron collider is via the Drell-Yan type processes

qq̄′ → W ∗± → T±T 0, qq̄′ → W ∗± → T 0!±, (34)

qq̄ → γ∗, Z∗ → T+T−, qq̄ → Z∗ → T±!∓. (35)

Note that there is no tree-level process for T 0T 0 production. In our numerical analysis,

we use the CTEQ6L1 parton distribution function [37] with factorization scale Q =
√

s/2,

where s is the intermediate gauge boson four-momentum squared (or the parton-level CM

energy squared).

A. Total cross sections

There are two main mechanisms to produce the heavy leptons in hadronic collisions:

pair production of TT , and associated single production Tei. The cross sections for heavy

pair production are well predicted by the SM gauge interactions. Those for heavy-light

associated production are governed by the Yukawa coupling yi
T . In Fig. 15, we present the

20

FIG. 15: Cross sections of single and pair productions of T±/T 0 as a function of its mass, (a) at

the Tevatron (1.96 TeV) and (b) at the LHC (14 TeV and 10 TeV). The scaling constant λ2 is 1

for TT , and |yk|2 for ekT .

total production cross sections for those processes versus the heavy lepton mass MT , for (a)

at the Tevatron (pp̄ at
√

S = 1.96 TeV) and (b) at the LHC (pp at
√

S = 14 TeV and 10

TeV). To view the generic feature, we have pulled out the effective couplings λ2 in the plots,

which is normalized to unity for the pair production, and to the Yukawa coupling squared

for the single production.

Given the consideration of Eq. (16) that leads to an upper bound on the Yukawa couplings

of |yk|2 < O(10−3), we expect the single production to be much smaller than the pair
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Same-sign lepton pair signature: 

Decays of lightest triplet:

observation of matter effects in oscillation, large θ13 allows also to distinguish the normal

from the inverted hierarchy. On the other hand, for small values of θ13, neutrino physics

may not be sufficient to clear the above issues. Here the information from the LHC may be

particularly handy. For this reason we highlight the small θ13 case. A few generic comments

are warranted.

1) In this model it turns out that µ → 3e dominates by large over µ → eγ [30]. Simply

the observation of µ → eγ by the MEG experiment would eliminate this theory.

2) Since one neutrino is massless the neutrinoless double beta decay can play a clear role

in distinguishing the normal from the inverted hierarchy. In particular, its observation in

the next generation of experiments would rule out the normal hierarchy, as shown in Fig. 8.5

of [36] (see the far left limit of the far right plot).

3) The observation of µ → 3e would imply large Yukawa couplings, which would in turn

imply large Im(z). In this limiting case the triplet lifetime would be too small to be measured.

For normal hierarchy there is a clear prediction of less than 10% triplet normalized branching

into electrons. So the final state with two electrons represents less than 1% of the total two

charged lepton final states in this case.

For negligible θ13 (that we set to zero), in both NH and IH cases clear predictions emerge.

In the case of IH one finds [22]

NBRτ

NBRµ
= tan2 θ23 (33)

In the opposite case of NH the electron NBR and the total lifetime are functions of Re[z]

and Im[z] only, which can thus be determined. The lifetime and the electron NBR cannot

take arbitrary values, but are restricted, as can be seen from Fig. 14. The muonic NBR

can then be used for the determination of the Majorana phase Φ, since the Dirac phase δ

disappears in this case.

One could go on and on, but at this point it is not so useful due to the poor knowledge

of the leptonic mixing matrix. As time goes on and knowledge of UPMNS grows, there will

be ample opportunity to return to these issues.
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NBRi ≡
BR(V ei)�
k BR(V ek)

=
|yi

T |2�
k |yk

T |2

T 0T± → (�±W∓)(�±Z/h)→ �±�± + 2j(W ) + 2j(Z)

Normalized branching ratios 
versus Majorana phase for 
NH (left) and IH (right) in 
minimal models. Im(z) ≥ 2

Discriminating power 
between NH/IH

Sensitivity to Majorana 
phase 

No missing ET, invariant mass 
reconstruction possible (l+2j)

projected LHC Sensitivity up to 
700GeV with 100 fb-1 @ 14TeV

Other signatures can be 
important l+l-+4j, 2l++l-+2j, etc.

FIG. 17: Total cross section for pp → T±T 0 production and decay at the LHC energy at
√

S = 14

TeV as a function of the heavy lepton mass. The solid curve (top) is for the production rate of

T+T 0 + T−T 0 before any decay or kinematical cuts. The cross section at the 10 TeV LHC is also

plotted (the curve right below) for comparison. The dotted (middle) curve represents production

cross section including appropriate branching fraction of Eq. (40), for the case of IH for illustration,

with ! = e, µ taken from the leading channels in Table II. The dashed (lower) curve shows variation

of signal cross section after taking into account the cuts in Eqs. (44− 47).

verse energy

/ET < 25 GeV. (45)

As for the energy smearing of the leptons and jets, we adopt the same form of Eq. (43), with

the CMS parameterization ae = 5%, be = 0.55% and aj = 100%, bj = 5%. For simplicity,

we did not separately smear the muon momenta by tracking, which would result in a better

resolution at lower energies and become worse at higher energies, typically when MT >∼ 500

GeV.
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FIG. 18: Differential distribution of the reconstructed mass M!jj at the LHC for two representative

values of heavy triplet lepton mass MT = 200, 400 GeV. The energy bin size is 10 GeV.

In Fig. 17 we show the total cross section for pp → T±T 0 production at the LHC as

a function of the heavy lepton mass. The solid curve (top) is for the production rate of

T+T 0 + T−T 0 at
√

S = 14 TeV before any decay or kinematical cuts. The cross section at

10 TeV is also plotted (the dot-dashed curve right below). In comparison with LHC at 14

TeV, the rate is scaled down to 60%− 50% at MT = 200− 400 GeV, and to 25% at MT = 1

TeV. The dotted (middle) curve represents production cross section including appropriate

branching fraction of Eq. (40), for the case of IH for illustration, with ! = e, µ taken from

the leading channels in Table II. The dashed (lower) curve shows variation of signal cross

section after taking into account all the kinematical cuts in Eqs. (44− 47). As a result of

the cuts, similar to the discussions in the previous section, the cross section is reduced by

about a factor of 4 for a modest lepton mass, but the reduction becomes more severe due

to the fact that the decay products are more collimated for a much heavier lepton and that
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Production and detection of 
lightest triplet at colliders
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Arhrib et al., 
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Beyond minimal I+III 
see-saw models

Adding another heavy fermion increases the number of free parameters

Strong correlations between different channels still remain:

sum is over all elements of the orthogonal matrix O, regardless of the 
flavour

enlarging the τℓ transitions by enhancing a single element of O will 

generically affect the µe channel

Some (additional) fine-tuning (alignment) of phases needed to break 
these correlations

L
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Beyond minimal I+III 
see-saw models

Adding extra triplets the overall scale of light neutrino masses is free 

In degenerate scenario with mν≈eV experiments (μ-e conv.) are 
already sensitive to values of Im(zi) ≤ 4.

Life-time limits of triplets relaxed (<10cm for T+, ∼∞ for T0)

Challenging detection at colliders!

SINDRUM bound

PRISM�PRIME projection
mΝ1�0�mΝ�1eV mini

mal
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al
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PRISM/PRIME exp.
C. Ankenbrandt et al., 
physics/0611124 Can expect positive LFV 

signals with natural values 
of Yukawas in the next 
generation of experiments!

Franceschini, Hambye, Strumia, 
0805.1613

J.F.K. & Nemevsek, 
0908.3451



Conclusions
TeV-scale I+III see-saw models can be probed using low-energy observables 
and high-energy colliders

presently best limits from μ-e conversion in nuclei

in minimal models make most other bounds irrelevant for the 
foreseeable future - positive observation would signal LFV beyond 
minimal I+III See-saw

still far from natural Yukawa values

non-minimal models could soon be probed in the interesting parameter 
space region

Important interplay with direct detection at high-energy colliders

in minimal models possible to probe NH/IH, Majorana phase

non-minimal models could escape direct detection @ LHC



Backup slides



PMNS Matrix 
& neutrino parameters

B. Bajc

The PMNS matrix:

U =





c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





× diag(1, eiΦ, 1)

Measuring lightest mediator decays

→ constraints on z, θ13, phases δ, Φ

Goa 09 39
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4. Summary

In this work we have provided an update on the status of three-flavour neutrino

oscillations, taking into account the latest available world neutrino oscillation data

presented at the Neutrino 2008 Conference. Our results are summarized in Figures 1,
2 and 3. Table 1 provides best fit points, 1σ errors, and the allowed intervals at 2 and

3σ for the three-flavour oscillation parameters.

parameter best fit 2σ 3σ

∆m2
21 [10−5eV2] 7.65+0.23

−0.20 7.25–8.11 7.05–8.34

|∆m2
31| [10−3eV2] 2.40+0.12

−0.11 2.18–2.64 2.07–2.75

sin2 θ12 0.304+0.022
−0.016 0.27–0.35 0.25–0.37

sin2 θ23 0.50+0.07
−0.06 0.39–0.63 0.36–0.67

sin2 θ13 0.01+0.016
−0.011 ≤ 0.040 ≤ 0.056

Table 1. Best-fit values with 1σ errors, and 2σ and 3σ intervals (1 d.o.f.) for
the three–flavour neutrino oscillation parameters from global data including solar,
atmospheric, reactor (KamLAND and CHOOZ) and accelerator (K2K and MINOS)
experiments.
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Neutrino masses from 
experiments

β decay:

0νββ decay:

But:

Majorana) [39] to improve on 0ν2β with 76Ge, which evolves from the second most powerful experiment,
IGEX [40]. The estimated sensitivity is several times weaker than what the Genius experiment would
like to achieve. There is also another interesting proposal named GEM [41].

One should note that in eq.s (3) and (4) we suggest that β-decay experiments will at best extract
a single parameter, mνe . This is the case of the three neutrino scenario considered here, for the mass
splittings suggested by oscillations are too little to be resolved by any experiment till now proposed.4 For
example the energy resolution of Katrin will be more than one order of magnitude larger than the scales
in eq. (2) [44]. Only if neutrinos have an almost degenerate spectrum the β-decay experiments mentioned
here could see neutrino masses. We will consider this case closely in section 2.5 (for a discussion of related
matter, and more general possibilities, see [42, 43]).

2.2 How to use the inputs from oscillations?

The connection of oscillations with β and 0ν2β-decay has been explored in a number of works [45, 46,
47, 42, 43].5 The quantities probed by β and 0ν2β experiments can be written in terms of the masses
mi, of the mixing angles θij and of the CP-violating phases α and β as

mνe =
(

∑

i

|V 2
ei| m2

i

)1/2

=
(

cos2 θ13(m
2
1 cos2 θ12 + m2

2 sin2 θ12) + m2
3 sin2 θ13

)1/2

(5)

|mee| =

∣

∣

∣

∣

∑

i

V 2
ei mi

∣

∣

∣

∣

=

∣

∣

∣

∣

cos2 θ13(m1 cos2 θ12 + m2e
2iα sin2 θ12) + m3e

2iβ sin2 θ13

∣

∣

∣

∣

. (6)

In both formulæ, we can identify the 3 individual contributions associated with the 3 masses mi. It is
useful to make few general remarks:

1. mνe depends on oscillation parameters and on the overall neutrino mass scale, while mee is also
sensitive to the Majorana phases.

2. The m2-contributions to mνe and mee are guaranteed to be non-zero (for inverted spectrum the
same is true for the m1-contribution).

3. Since |Vei| ≤ 1, the mixing factors suppress more strongly the mi-contributions to mee than those
to mνe . For example, at the best-fit LMA solution V 2

e2 ≈ 1/3 we have a m2-contribution to mνe

70% larger than the one to mee. This is even more evident is the hierarchical case, when the
m3-contributions are suppressed by the small angle θ13.

4. Let us denote as mmin the lightest neutrino mass: mmin = m1 (mmin = m3) in the case of normal
(inverted) hierarchy. Increasing m2

min increases m2
νe

by the same amount, and mνe is always larger
than mmin. Instead, the behaviour of mee as a function of mmin is less simple, especially when the
individual contributions become comparable in size.

4We approximate the exact formula for the β-decay spectrum close to end-point in presence of mixed neutrinos in terms
of a single effective neutrino mass parameter [33] m2

νe
≡ |V 2

ei|m
2
i as

dN
dEν

∝
∑

i

|V 2
ei|Γ(mi) ≈ Γ(mνe

) where Γ(m) ≡ Eν Re
√

E2
ν − m2

i .

(the measured electron energy in the 3H →3 He e ν̄e, decay is related to Eν by kinematics). This approximation is trivially
a good one if neutrinos are almost degenerate. However, its usefulness is more general [42], since: (1) the difference between
the approximated and exact spectrum, integrated around the end-point, vanishes at order O(m2

i ) (this is interesting for
end-point search of neutrino mass with limited energy resolution); (2) far from the end-point, the difference is zero at order
O(m2

i ) (this is interesting for calorimetric search of neutrino mass). These properties do not hold for other definitions of
the ‘effective mass’, say m′

νe
= |Vei|

2 · mi [43]. However, if a future β decay experiment will attain a very high sensitivity,
and at the same time will be able to resolve the separation between the mass levels, it will be necessary to introduce more
parameters to describe the measured β spectrum, and it will be possible to extract more interesting information.

5It is commonly assumed that the dominant contribution to 0ν2β comes from massive neutrinos. We remark that, even
with this assumption there might be surprises: e.g. if CPT is violated, the rate of double β-transition could be different from
that of double β+, or the β− absorption (EC) followed by β+ emission. However, we will not consider these possibilities.
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B. Bajc

Unfortunately this not completely true: sometimes mν not directly
connected to 0ν2β decay. Example:

LR symmetry with low WR, νR masses has a nonzero 0ν2β decay
even with yD, mν → 0

uR e−R e−R uR

W−
R νR νR W−

R

dR dR

Mohapatra, Senjanović, 80

Goa 09 11

c.f. Mohapatra, 
Senjanovic,
PRD23 (1981)



Minimal See-saw

Present data require two massive neutrinos

in normal/inverse hierarchy

In type I/III can be accomplished using a 
combination of two mediators of any type

neutrino masses cannot be degenerate

atmospheric scale sets the largest mass



Minimal See-saw
Can be excluded by direct neutrino mass measurements

Can also be tested via direct production and decays of 
mediators
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Figure 12: Predictions for |mee| assuming a hierarchical (fig. 12a) and inverted (fig. 12b) neutrino spec-
trum. In fig. 12c we update the upper bound on the mass of quasi-degenerate neutrinos implied by 0ν2β
searches. The factor h ≈ 1 parameterizes the uncertainty in the nuclear matrix element (see sect. 2.1).
In fig. 12d we plot the 90% CL range for mee as function of the lightest neutrino mass, thereby covering
all spectra. The darker regions show how the mee range would shrink if the present best-fit values of
oscillation parameters were confirmed with negligible error.
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Minimal See-saw
Type III example:

For rank-3 ν mass (R complex orthogonal 3 × 3) too many 
unknowns: 

z1,2,3 → 6 real 

neutrino mass → 1 real 

θ13, δ, Φ1,2 from U (PMNS) → 4 real 

Hard to disentangle useful information for neutrino 
parameters  from only 3 measurements |yTi| of the lightest 
mediator

Casas & Ibarra, hep-ph/0103065

vyi
T =

√
mT

�

j

Uij

�
mj

νRji(z1, z2, z3) (for lightest mediator)



Minimal See-saw
Type III example: For rank-2 ν mass

Normal hierarchy:

Inverted hierarchy:

U = PMNS matrix, z = arbitrary complex number

Measuring lightest mediator decays constrains z, θ13, 
phases δ, Φ

Ibarra & Ross, hep-ph/0307051

vyi
T =

√
mT

�
Ui1

�
m1

ν cos z + Ui2

�
m2

ν sin z
�

vyi
T =

√
mT

�
Ui2

�
m2

ν cos z + Ui3

�
m3

ν sin z
�



A minimal predictable 
model

1) ≤ TeV mediator mass 

2) gauge quantum numbers (type III seesaw) 

3) decays mainly through yukawas 

4) light neutrino mass matrix of rank 2 



A minimal predictable 
model

Why is the minimal non-supersymmetric 
Georgi-Glashow SU(5) ruled out?

Minimal: 24H+5H+3(10F+5F) 

gauge couplings do not unify

neutrinos (almost) massless

Λ > 100 MGUT > 1017GeV (perturbativity)

LY = 10i

F
Y ij

1 10j

F
5H + 5∗

H
10i

F
Y ij

2 5̄j

F
+

1
Λ

�
5̄i

F
6HY ij

3 5H 5̄j

F
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mν ≈ Y3
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A minimal predictable 
model

Add just one extra fermionic 24F

Under SU(3)C ×SU(2)W ×U(1)Y decomposition 

24F = (1, 1)0 + (1, 3)0 + (8, 1)0 + (3, 2)5/6 + (3, 2)−5/6 

Extra states (m3 , m8 , m(3,2) ) with respect to the 
minimal model → RGE change 

For MGUT ≥ 1015.5 GeV (p decay) → m3 ≤ 1TeV

Mixed type I+III see-saw with rank 2 neutrino 
mass matrix

Bajc, Senjanovic, hep-ph/0612029 
Bajc, Nemevsek, Senjanovic, 
hep-ph/0703080



Low-energy 
phenomenology

In minimal models all effects predicted and correlated in terms of 
(mT, mS, Im(z))

Charged fermion LFV Z couplings scale as ∼e2Im(z)/mT

Maximal for smallest allowed mT ≈ 100GeV

Required fine-tuning measured in ∼e2Im(z)

Yukawas considered natural for Im(z)<1

The most stringent bound fixes all other low-energy phenomenology 
for all lepton families



Diagonalization of the neutral and charged lepton mass 
matrices

produces mixing of chiral and vector-like fermions 

alters interactions with W, Z (fi=(e,μ,τ,T-), fj’=(ν1,ν2,ν3,T0,S))

We use the linear combinations of the fields, labeled by their U(1) charge√
2T± = T 1 ∓ iT 2 and T 0 = T 3 and after spontaneous symmetry breaking,

Lagrangian in Eq.(15) gives the following mass terms

Lmass =
�
�i T−�

M�

�
�c
j

T+

�
+

�
νi T0 S

�
Mν




νj

T0

S



 + h.c. (19)

where

M� =

�
v/
√

2 yij
� δij 0

v yi
T mT

�
and Mν =




03×3 v yi

T v yi
S

v yj
T mT 0

v yj
S 0 mS



 (20)

can be brought to a diagonal form by a biunitary and congruent transforma-
tion for the charged and neutral fields

M̂� = U+†M�U
−, M̂ν = U0T MνU

0. (21)

In the limit when vyT � mT , one can expand these matrices in terms of
small parameters εi = v yi

T /mT and ε�i = v yi
T mi/m2

T ,

U+ =





1− 1
2 |ε

�e|2 0 0 ε�e∗

0 1− 1
2 |ε

�µ|2 0 ε�µ∗

0 0 1− 1
2 |ε

�τ |2 ε�τ∗

−ε�e −ε�µ −ε�τ 1−
�

i
1
2 |ε

�i|2



 , (22)

U− =





1− 1
2 |ε

e|2 −1
2ε

e∗εµ −1
2ε

e∗ετ εe∗

−1
2ε

eεµ∗ 1− 1
2 |ε

µ|2 −εµ∗ετ εµ∗

−1
2ε

eετ∗ −1
2ε

µετ∗ 1− 1
2 |ε

τ |2 ετ∗

−εe −εµ −ετ 1− 1
2

�
i |εi|2



 . (23)

After performing these rotations, we combine the mass eigenstates of the
charged fermions and the triplets into a four component Dirac spinor while
the neutral fermions form a Majorana spinor using the usual prescription

�i =

�
�i

�c
i

�
, T− =

�
T−

T+

�
, νi =

�
νi

νi

�
, T− =

�
T 0

T 0

�
. (24)

The mixing matrices alter the gauge couplings of the SM fermions and since
they mix the chiral fermions with vector-like triplets, it is convenient to
introduce a general notation for the charged and neutral four component
spinors (see also the appendix of [14])

f−i = (e, µ, τ, T−), f 0
j = (ν1, ν2, ν3, T

0, S). (25)
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Using such a convention, we can write down the W and Z couplings in a
unified way with (PR,L = (1± γ5)/2)

Lint = e f i /Afi + (g f i /W
−
(LW PL + RW PR)ijf

�
j + h.c.) (26)

+
g

cw
f i /Z(LZPL + RZPR)ijfj +

g

cw
f
�
i /Z(L�ZPL + R�ZPR)ijf

�
j+ (27)

+ φ−f i(L
φPL + RφPR)ijf

�
j − φ+f

�
j

�
Rφ∗PR + Lφ∗PR

�
ij

fi (28)

+ φ0f i

�
L0PL + R0PR

�
fj + hf i

�
LhPL + RhPR

�
fj. (29)

with the following gauge

LW
ij = U−∗

αi U0
αj/
√

2 + U−∗
βi U0

βj, RW
ij = U+∗

βi U0∗
βj , (30)

LZ
ij = (s2

w − 1/2)U−∗
αi U−

αj − c2
wU−∗

βi U−
βj, RZ

ij = s2
wU+∗

αi U+
αj − c2

wU+∗
βi U+

βj, (31)

L�Z
ij = −U0∗

αi U
0
αj/2, R�Z

ij = 0. (32)

and would-be-Goldstone couplings

Lφ
ij = −yαα�

� U+∗
αi U0

α�j, (33)

Rφ
ij =

�
yβ−nT α

T (U−
αiU

0
βj −

√
2U−

βiU
0
αj)− yγ−nT−nSα

S U−
αiU

0
γj

�∗
, (34)

L0
ij = − 1√

2
yαα�

� U+∗
αi U−

α�j + yβ−nT α
T U+∗

βi U−
αj, (35)

R0
ij =

1√
2
yαα�∗

� U−∗
αi U+

α�j − yβ−nT α∗
T U−∗

αi U+
βj. (36)

In the notation above, we assume that repeated indices are always summed.
The indices α, α� run over the light families from 1 to 3, β runs over the
number of triplets from 4 to 3 + nT , while γ is the singlet index going from
4 + nT to 3 + nT + nS. When the additional particles are considered, the
mass matrices in Eq.(20) have to be extended.

A couple of features of the model are noteworthy. While the photon
vertex remains universal at the tree-level, the Z vertex now receives off-
diagonal entries. Also, the right-handed couplings are now present, however
they are allways suppressed by the mass of the light charged fermions m�/m2

T

which can be seen from the expansion of U+ in Eq.(22). Notice that the SM
limits are easily obtained, by either sending yT,S → 0 and/or mT,S →∞. In
this case, the mixing matrices become diagonal and the SM expressions are
recovered.
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General parametrization 
of minimal see-saw models



(Non-)unitarity relations

LFV coupling matrices
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B f2 → f1γ calculation

Correspondance between non-unitarity of W couplings and off-diagonal Z
coupling can easily be derived from the general expression in Eq.(30) and

(31)

LW
ik LW∗

jk = (U−∗
αi U0

αk/
√

2 + U−∗
βi U0

βk)(U
−
α�jU

0∗
α�k/
√

2 + U−
β�jU

0∗
β�k) (37)

= 1/2U−∗
βi U−

βj, (38)

LZ
ij = (1/2− c2

w)U−∗
αi U−

αj − c2
wU−∗

βi U−
βj (39)

= −1/2U−∗
βi U−

βj, (40)

where we have used unitarity relations of the mixing matrices

U0
αkU

0∗
α�k = δαα� , (41)

U±αiU
±∗
αj + U±βiU

±∗
βj = δij, (42)

and α, α� �= β, β�
and i �= j. The same relation holds for the R coupling

RW
ik RW∗

jk = −RZ
ij. (43)

Also, relations between the would be goldstone couplings and the gauge

boson couplings are needed in order to cancel the ξ dependence in the finite

part of the amplitude. We find that

v2

4
Rχ

icL
χ
cj = (RZ

icmc − LZ
icmi)(R

Z
cjmc − LZ

cjmj), (44)

v2

4
Lχ

icR
χ
cj = (LZ

icmc −RZ
icmi)(L

Z
cjmc −RZ

cjmj), (45)

hold, where we do not sum over c.
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Results
l -> 3l’

τ -> 3 e gives the best tau-e bound* 

τ -> h l

τ -> π0 μ gives the best tau-μ bound*

Radiative LFV decays are suppressed!

Flavour conserving leptonic Z widths more constraining than LFV 
ones

Charged current LFU more constrained at low energies than from 
direct W measurements

Many other observables studied, found not relevant (h->ll’, (g-2)μ,...)

*Relevant for non-minimal models



Results
Comparison of bounds:

Differences between normal/inverted hierarchy and III vs I+III 
scenarios not crucial (in the minimal models)

Mild dependence on the Majorana phase (θ13, δ irrelevant)

Im(z) sensitivity logarithmic!
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Conclusions
Future improvements:

Planned μ-e nuclear conversion sensitivity of 10−16 or even 
10−18 on Brμe

would constrain Im(z) to 4.1 (3.7) in case of the 
minimal I+III model and to 3.7(3.4) for the minimal 
type III

In non-minimal models Im(zi) < 1 could be probed

Orders of magnitude better than projected MEG 
sensitivity for μ->eγ (Im(z) ≤ 9)

Allows to distinguish type I and III contributions
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Kitano, Koike and Okada, 
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