Signatures of low scale type I+III See-saw models

Jernej F. Kamenik

Institut "Jožef Stefan"

1 June 2010 <u>Planck '10, CERN</u>

See-saw

- With the degrees of freedom of the SM
- v masses parametrized by Weinberg d = 5 effective operator

 $\mathcal{O}_{\nu}^{d=5} = y_{\nu}^{ij} \frac{L_i H L_j H}{\Lambda}$

S. Weinberg, PRL43 (1979)

In the basis with diagonal charged leptons

 $\frac{v^2}{\Lambda}y_{\nu}^* = U_{PMNS}m_{\nu}^{diag}U_{PMNS}^T$

- ø y describes the flavour structure
- \circ A signals the appearance of new physics
- Only 3 ways of producing the Weinberg operator at tree-level*
 - by exchange of 3 types of heavy particles

See-saw

 $\langle H \rangle$

 $\langle H \rangle$

 $\langle H \rangle$

 ν_L

 ν_L

 ν_L

• fermion singlet S = (1, 1, 0) TYPE I SEESAW

 ν_L

 ν_L

 ν_L

Minkowski, PLB67 (1977) Gell-Mann, Ramond, Slansky, Rev. Mod. Phys. 50 (1978) Glashow, NATO Adv. Study Inst. Ser. B Phys. 59 (1979) Yanagida, Prog. Theo. Phys. 64 (1980) Mohapatra and G. Senjanovic, PRL44 (1980)

• boson weak triplet $\Delta = (1, 3, 2)$ TYPE II SEESAW

 $\langle H \rangle$

 $\langle H \rangle$

Magg, Wetterich, PLB94 (1980) Lazarides, Shafi and Wetterich, NPB181 (1981) Mohapatra, Senjanovic, PRD23 (1981)

fermion weak triplet T = (1, 3, 0) TYPE III SEESAW

 $\langle H \rangle$

Foot, Lew, He, Joshi, Z.Phys.C44 (1989)

Testable See-saw

 Neutrinoless double beta – probes the Weinberg operator (however, also other NP contributions are possible)

$$\mathcal{O}_{\nu}^{d=5} = y_{\nu}^{ij} \frac{L_i H L_j H}{\Lambda}$$

c.f. Mohapatra, Senjanovic, PRD23 (1981)

Integrating out heavy mediators produces dim-6 operators – suppressed by the same scale Λ

• Generically, GUT models predict $\Lambda \leq \Lambda_{GUT}$

- Difficult to probe the origin of the mass operator directly at a collider
- Tiny effects due to dim-6 operator contributions

Testable See-saw

- TeV scale see-saw can be probed
 - Direct production of mediators at the LHC
 - LFV effects at low energies
- Onder what conditions?

del Aguila, Aguilar-Saavedra, Pittau, hep-ph/0703261 Franceschini, Hambye, Strumia, 0805.1613 del Aguila, Aguilar-Saavedra, 0808.2468 Arhrib et al., 0904.2390

Abada et al., 0707.4058 He & Oh, 0902.4082 Arhrib, Benbrik and Chen, 0903.1553 J.F.K. & Nemevsek, 0908.3451

- Light mediators -> tiny Yukawa eigenvalues
- Need other (gauge) couplings for efficient production
 - Type II or III
- Large LFV effects typically require some fine-tuning but are possible
 - O UPMNS non-unitary in type I, III
 - Charged LFV processes at tree level in type III
- Antusch et al. hep-ph/0607020

General parametrization of "minimal" see-saw models

• Consider type III (two triplets) and mixed I+III (singlet and triplet) scenarios

$$m_{\nu}^{ij} = -\frac{v^2}{2} \left(\frac{y_T^i y_T^j}{m_T} + \frac{y_S^i y_S^j}{m_S} \right)$$

- The lightest neutrino is massless and there is only one physical Majorana phase
- Ibarra-Ross parameterization applies (e.g. for inverted hierarchy): Ibarra & Ross, hep-ph/0307051 $vy_T^i = \sqrt{m_T} \left(U_{i1}\sqrt{m_\nu^1} \cos z + U_{i2}\sqrt{m_\nu^2} \sin z \right)$ $vy_S^i = \sqrt{m_S} \left(-U_{i1}\sqrt{m_\nu^1} \sin z + U_{i2}\sqrt{m_\nu^2} \cos z \right)$

The size of the Yukawa couplings determined by single complex parameter z

- Increases exponentially with Im(z) (Re(z) becomes irrelevant as Im(z)>>1)
- a LFV effects can become visible due to possible cancellations
 - The higher the seesaw scale, the more severe fine-tuning is needed
- Measuring lightest mediator decays constrains z, $θ_{13}$, phases δ, Φ

Low-energy phenomenology

Diagonalization of the neutral and charged lepton mass matrices

- produces mixing of chiral and vector-like fermions
- alters interactions with W, Z ($f_i=(e,\mu,\tau,T^-)$, $f_j=(v_1,v_2,v_3,T^0,S)$)

$$\mathcal{L}_{int} = e \,\overline{f}_i A f_i + (g \,\overline{f}_i W^- (L^W P_L + R^W P_R)_{ij} f'_j + h.c.) + \frac{g}{c_w} \overline{f}_i Z (L^Z P_L + R^Z P_R)_{ij} f_j + \frac{g}{c_w} \overline{f}'_i Z (L'^Z P_L + R'^Z P_R)_{ij} f'_j$$

Tree-level Z-mediated LFV

- LFV lepton decays: μ->3e, τ->3μ, τ >eeμ, τ->μμe
- μ-e conversion in nuclei
- LFV semileptonic tau decays: $\tau h^0 e$, $\tau - h^0 \mu$, $(h^0 = \pi^0, \eta^{(1)}, \phi)$
- Leptonic Z decay width at LEP: Z->ll'

Tree-level LFU violation in charged currents:

- GF determination from muon lifetime
- At low energies: (h->μν)/(h->eν), (τ >hν)/(h->eν), (τ->hν)/(h->μν), (h=π,K)
- At colliders: (W->lv)/(W->l'v)

Loop-induced

- LFV: μ->eγ, τ->eγ, τ->μγ
- Anomalous lepton magnetic moments: (g-2)μ

Antusch et al. hep-ph/0607020

J.F.K. & Nemevsek, 0908.3451

Arhrib, Benbrik and Chen, 0903.1553

Abada et al., 0707.4058 C. Biggio, 0806.2558

He & Oh, 0902.4082

- In minimal models all effects predicted and correlated in terms of $(m_T, m_S, Im(z))$
- The most stringent bound fixes all other low-energy phenomenology for all lepton families

Bounds

The strictest bound on the μ eZ coupling is obtained by the μ -e 0 conversion in a nucleus

 $Br_{\mu e} = \Gamma_{conv.} / \Gamma_{capture}; \quad \begin{array}{c} Br_{\mu e}^{Au} < 7 \times 10^{-13} @ 90\% CL \\ Br_{\mu e}^{Ti} < 4.3 \times 10^{-12} @ 90\% CL \end{array}$

SINDRUM II, PLB317 (1993); Eur.Phys.J. C47 (2006);

Tree-level Z exchange dominates 0

 $|L_{12}^Z|^2 + |R_{12}^Z|^2 < 10^{-15}$

Kitano, Koike & Okada, hep-ph/0203110 J.F.K. & Nemevsek, 0908.3451

- Im(z) < 7.5(7.1) for one triplet and one singlet [normal 0 (inverted) hierarchy at m_s=m_T=100GeV]
- \odot Im(z) < 7.1(6.7) for two triplets
- Mild dependence on θ_{13} and the unknown phases (Φ)
 - bounds obtained by varying in allowed ranges 0

Bounds

• Comparison of bounds:

- Differences between normal/inverted hierarchy and III vs I+III scenarios not crucial (in the minimal models)
- Mild dependence on the Majorana phase ($θ_{13}$, δ irrelevant)
- Im(z) sensitivity logarithmic!

a 0.15

Production finders setection of lightest from plet of at colliders

Arhrib et al., 0904.2390 Searches for heavy charged fermions at LEP constrain $m_T > 100$ GeV

- In minimal models, triplet life-time bounded from above:
 - $T_T < 0.5 \text{ mm} (200 \text{ GeV/m})^2$ (for NH; 5.6 times shorter in IH)

Possibly displaced (secondary) vertices, no charged tracks

Ø Drell-Yan type production:

$$q\bar{q}' \to W^{*\pm} \to T^{\pm}T^{0}, \quad q\bar{q}' \to W^{*\pm} \to T^{0}\ell^{\pm},$$
$$q\bar{q} \to \gamma^{*}, Z^{*} \to T^{+}T^{-}, \quad q\bar{q} \to Z^{*} \to T^{\pm}\ell^{\mp}.$$

Production and detection of lightest triplet at colliders

Arhrib et al., 0904.2390

0

Normalized BR

No missing E_T , invariant mass reconstruction possible (l+2j)

projected LHC Sensitivity up to 700GeV with 100 fb⁻¹ @ 14TeV

Other signatures can be important l+l-+4j, 2l++l-+2j, etc.

> Franceschini, Hambye, Strumia 0805.1613 del Aguila, Aguilar-Saavedra, 0808.2468

Normalized branching ratios versus Majorana phase for NH (left) and IH (right) in minimal models. $Im(z) \ge 2$

- Discriminating power 0 between NH/IH
- Sensitivity to Majorana 0 phase

Beyond minimal I+III see-saw models

- Adding another heavy fermion increases the number of free parameters
- Strong correlations between different channels still remain:

$$\begin{aligned} \mathcal{L}_{e\mu}^{Z} &\simeq \frac{v^{2}}{2} \sum_{\alpha=1}^{n_{T}} y_{\alpha e}^{*} y_{\alpha \mu} / m_{\alpha}^{2} \\ &= \sum_{\alpha=1}^{n_{T}} \sum_{i,j=1}^{3} \left[\sqrt{m_{i}^{\nu} m_{j}^{\nu}} / m_{\alpha} \right] O_{\alpha i}^{*} O_{\alpha j} U_{ei} U_{\mu j}^{*}, \end{aligned}$$

- sum is over all elements of the orthogonal matrix O, regardless of the flavour
- enlarging the $\tau \ell$ transitions by enhancing a single element of O will generically affect the μ e channel
- Some (additional) fine-tuning (alignment) of phases needed to break these correlations
 He et al., 0907.1607

Beyond minimal I+III see-saw models

- Adding extra triplets the overall scale of light neutrino masses is free
- In degenerate scenario with m_v≈eV experiments (µ-e conv.) are already sensitive to values of Im(z_i) ≤ 4.

PRISM/PRIME exp. C. Ankenbrandt et al., physics/0611124

J.F.K. & Nemevsek, 0908.3451

Can expect positive LFV signals with natural values of Yukawas in the next generation of experiments!

- Life-time limits of triplets relaxed (<10cm for T⁺, ~∞ for T⁰) Franceschini, Hambye, Strumia, 0805.1613
 - Challenging detection at colliders!

Conclusions

- TeV-scale I+III see-saw models can be probed using low-energy observables and high-energy colliders
 - \circ presently best limits from μ -e conversion in nuclei
 - in minimal models make most other bounds irrelevant for the foreseeable future – positive observation would signal LFV beyond minimal I+III See-saw
 - still far from natural Yukawa values
 - non-minimal models could soon be probed in the interesting parameter space region
- Important interplay with direct detection at high-energy colliders
 - in minimal models possible to probe NH/IH, Majorana phase
 - o non-minimal models could escape direct detection @ LHC

Backup slides

PMNS Matrix & neutrino parameters

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

$$\times \operatorname{diag}(1, e^{i\Phi}, 1)$$

c.f. Schwetz, Tortola, Valle 0808.2016

		And the second s	
parameter	best fit	2σ	3σ
$\Delta m_{21}^2 \left[10^{-5} \mathrm{eV}^2 \right]$	$7.65_{-0.20}^{+0.23}$	7.25-8.11	7.05 - 8.34
$ \Delta m_{31}^2 \left[10^{-3} \mathrm{eV}^2\right]$	$2.40^{+0.12}_{-0.11}$	2.18 - 2.64	2.07 – 2.75
$\sin^2 \theta_{12}$	$0.304_{-0.016}^{+0.022}$	0.27 - 0.35	0.25 - 0.37
$\sin^2 heta_{23}$	$0.50\substack{+0.07 \\ -0.06}$	0.39 - 0.63	0.36 - 0.67
$\sin^2 \theta_{13}$	$0.01\substack{+0.016\\-0.011}$	≤ 0.040	≤ 0.056

Neutrino masses from experiments

β decay:

Ονββ decay:

$$m_{\nu_{e}} = \left(\sum_{i} |V_{ei}^{2}| \ m_{i}^{2}\right)^{1/2} = \left(\cos^{2}\theta_{13}(m_{1}^{2}\cos^{2}\theta_{12} + m_{2}^{2}\sin^{2}\theta_{12}) + m_{3}^{2}\sin^{2}\theta_{13}\right)^{1/2}$$
$$|m_{ee}| = \left|\sum_{i} V_{ei}^{2} \ m_{i}\right| = \left|\cos^{2}\theta_{13}(m_{1}\cos^{2}\theta_{12} + m_{2}e^{2i\alpha}\sin^{2}\theta_{12}) + m_{3}e^{2i\beta}\sin^{2}\theta_{13}\right|.$$

But:

0

LR symmetry with low W_R , ν_R masses has a nonzero $0\nu 2\beta$ decay even with y_D , $m_\nu \to 0$

Minimal See-saw

Present data require two massive neutrinos
in normal/inverse hierarchy

In type I/III can be accomplished using a combination of two mediators of any type
 neutrino masses cannot be degenerate
 atmospheric scale sets the largest mass

90 % CL

Inverted hierarchy

Minimal See-saw

Can be excluded by direct neutrino mass measurements

90 % CL

Degenerate neutrinos

Feruglio, Strumia, Vissani hep-ph/0201291

Can also be tested via direct production and decays of mediators

Minimal See-saw

• Type III example:

For rank-3 v mass (R complex orthogonal 3 \times 3) too many unknowns:

 $vy_T^i = \sqrt{m_T} \sum_j U_{ij} \sqrt{m_\nu^j R_{ji}(z_1, z_2, z_3)}$ (for lightest mediator) $z_{1,2,3} \rightarrow 6$ real Casas & Ibarra, hep-ph/0103065

- Hard to disentangle useful information for neutrino parameters from only 3 measurements |y_Tⁱ| of the lightest mediator

Minimal See-saw

Sormal hierarchy:

$$vy_T^i = \sqrt{m_T} \left(U_{i2} \sqrt{m_\nu^2} \cos z + U_{i3} \sqrt{m_\nu^3} \sin z \right)$$

Inverted hierarchy:

$$vy_T^i = \sqrt{m_T} \left(U_{i1} \sqrt{m_\nu^1} \cos z + U_{i2} \sqrt{m_\nu^2} \sin z \right)$$

- U = PMNS matrix, z = arbitrary complex number
- Measuring lightest mediator decays constrains z, θ_{13} , phases δ , Φ

Ibarra & Ross, hep-ph/0307051

A minimal predictable model

● 1) ≤ TeV mediator mass
● 2) gauge quantum numbers (type III seesaw)
● 3) decays mainly through yukawas
● 4) light neutrino mass matrix of rank 2

A minimal predictable model

Why is the minimal non-supersymmetric Georgi-Glashow SU(5) ruled out?

Minimal: $24_{H} + 5_{H} + 3(10_{F} + \overline{5}_{F})$

gauge couplings do not unify

neutrinos (almost) massless

 $\mathcal{L}_{Y} = 10_{F}^{i} Y_{1}^{ij} 10_{F}^{j} 5_{H} + 5_{H}^{*} 10_{F}^{i} Y_{2}^{ij} \bar{5}_{F}^{j} + \left(\frac{1}{\Lambda} \left[\bar{5}_{F}^{i} 6_{H} Y_{3}^{ij} 5_{H} \bar{5}_{F}^{j}\right]\right)$

 \circ Λ > 100 M_{GUT} > 10¹⁷GeV (perturbativity) $m_
u pprox Y_3 rac{v^2}{\Lambda} \lesssim 10^{-4} {
m eV}$

A minimal predictable model

Add just one extra fermionic 24_F

Bajc, Senjanovic, hep-ph/0612029 Bajc, Nemevsek, Senjanovic, hep-ph/0703080

Onder SU(3)_C ×SU(2)_W ×U(1)_Y decomposition
 Onder SU(3)_C ×SU(2)_W ×U(1)_Y

 $\bigcirc 24_{\text{F}} = (1, 1)_0 + (1, 3)_0 + (8, 1)_0 + (3, 2)_{5/6} + (3, 2)_{-5/6}$

So For M_{GUT} ≥ 10^{15.5} GeV (p decay) → m₃ ≤ 1TeV

Mixed type I+III see-saw with rank 2 neutrino mass matrix

Low-energy phenomenology

- In minimal models all effects predicted and correlated in terms of (m_T, m_s, Im(z))
- The charged fermion LFV Z couplings scale as $\sim e^{2Im(z)}/m_T$
 - Maximal for smallest allowed $m_T ≈ 100 \text{GeV}$
 - Required fine-tuning measured in ~e^{2Im(z)}
 - So Yukawas considered natural for Im(z)<1</p>
- The most stringent bound fixes all other low-energy phenomenology for all lepton families

General parametrization of minimal see-saw models

Diagonalization of the neutral and charged lepton mass matrices

$$M_{\ell} = \begin{pmatrix} v/\sqrt{2} \ y_{\ell}^{ij} \delta^{ij} & 0\\ v \ y_{T}^{i} & m_{T} \end{pmatrix} \text{ and } M_{\nu} = \begin{pmatrix} 0_{3\times3} & v \ y_{T}^{i} & v \ y_{S}^{i}\\ v \ y_{T}^{j} & m_{T} & 0\\ v \ y_{S}^{j} & 0 & m_{S} \end{pmatrix}$$
$$\hat{M}_{\ell} = U^{+\dagger} M_{\ell} U^{-}, \ \hat{M}_{\nu} = U^{0T} M_{\nu} U^{0}$$

- produces mixing of chiral and vector-like fermions
- alters interactions with W, Z (f_i=(e,µ,T,T⁻), f_j[']=(v₁,v₂,v₃,T⁰,S))

$$\mathcal{L}_{int} = e \,\overline{f}_i \mathcal{A} f_i + (g \,\overline{f}_i \mathcal{W}^- (L^W P_L + R^W P_R)_{ij} f'_j + h.c.) + \frac{g}{c_w} \,\overline{f}_i \mathcal{Z} (L^Z P_L + R^Z P_R)_{ij} f_j + \frac{g}{c_w} \,\overline{f}_i' \mathcal{Z} (L'^Z P_L + R'^Z P_R)_{ij} f'_j$$

LFV coupling matrices

$$\begin{split} L_{ij}^{W} &= U_{\alpha i}^{-*} U_{\alpha j}^{0} / \sqrt{2} + U_{\beta i}^{-*} U_{\beta j}^{0}, \qquad R_{ij}^{W} = U_{\beta i}^{+*} U_{\beta j}^{0*}, \\ L_{ij}^{Z} &= (s_{w}^{2} - 1/2) U_{\alpha i}^{-*} U_{\alpha j}^{-} - c_{w}^{2} U_{\beta i}^{-*} U_{\beta j}^{-}, \qquad R_{ij}^{Z} = s_{w}^{2} U_{\alpha i}^{+*} U_{\alpha j}^{+} - c_{w}^{2} U_{\beta i}^{+*} U_{\beta j}^{+}, \\ L_{ij}^{\prime Z} &= -U_{\alpha i}^{0*} U_{\alpha j}^{0} / 2, \qquad R_{ij}^{\prime Z} = 0. \end{split}$$

(Non-)unitarity relations

c.f. G. C. Branco, L. Lavoura and J. P. Silva, Int. Ser. Monogr. Phys. 103 (1999)

$$\begin{split} L_{ik}^{W} L_{jk}^{W*} &= (U_{\alpha i}^{-*} U_{\alpha k}^{0} / \sqrt{2} + U_{\beta i}^{-*} U_{\beta k}^{0}) (U_{\alpha' j}^{-} U_{\alpha' k}^{0*} / \sqrt{2} + U_{\beta' j}^{-} U_{\beta' k}^{0*}) \\ &= 1 / 2 U_{\beta i}^{-*} U_{\beta j}^{-}, \\ L_{ij}^{Z} &= (1 / 2 - c_{w}^{2}) U_{\alpha i}^{-*} U_{\alpha j}^{-} - c_{w}^{2} U_{\beta i}^{-*} U_{\beta j}^{-} \\ &= -1 / 2 U_{\beta i}^{-*} U_{\beta j}^{-}, \\ R_{ik}^{W} R_{jk}^{W*} &= -R_{ij}^{Z}. \end{split}$$

Results

@ l -> 3l'

@ T -> h l

- Radiative LFV decays are suppressed!
- Flavour conserving leptonic Z widths more constraining than LFV ones
- Charged current LFU more constrained at low energies than from direct W measurements
- Many other observables studied, found not relevant (h->ll', (g-2)_µ,...)

Results

• Comparison of bounds:

- Differences between normal/inverted hierarchy and III vs I+III scenarios not crucial (in the minimal models)
- Mild dependence on the Majorana phase ($θ_{13}$, δ irrelevant)
- Im(z) sensitivity logarithmic!

Conclusions

Suture improvements:

PRISM/PRIME exp. C. Ankenbrandt et al., physics/0611124 Planned μ-e nuclear conversion sensitivity of 10⁻¹⁶ or even 10⁻¹⁸ on Br_{μe}

- would constrain Im(z) to 4.1 (3.7) in case of the minimal I+III model and to 3.7(3.4) for the minimal type III
- In non-minimal models $Im(z_i) < 1$ could be probed

MEG Collab. Nuovo Cim.123B (2008)

Kitano, Koike and Okada, hep-ph/0203110

- Orders of magnitude better than projected MEG sensitivity for μ->eγ (Im(z) ≤ 9)
- Allows to distinguish type I and III contributions