Broken R-Parity in the Sky and at the LHC

Wilfried Buchmüller DESY, Hamburg

with Covi, Hamaguchi, Ibarra, Yanagida '07; Endo, Shindou '08; Ibarra, Shindou, Takayama, Tran '09; Bobrovskyi, Hajer, Schmidt '10

Planck 2010, CERN, June 2010

I.Broken R-Parity and Lepton Number

Theories with and without R-parity are on equal footing; in string compactifications R-parity (dis)favoured. Without R-parity lightest superparticle (LSP) no longer stable, in general no dark matter candidate.

Strong constraints on lepton number and R-parity violating interactions

$$W_{\Delta L=1} = \frac{1}{2} \lambda_{ijk} l_i e_j^c l_k + \lambda'_{ijk} d_i^c q_j l_k$$

from baryogenesis (sphaleron processes); require baryon asymmetry not erased before electroweak transition, implies (Campbell et al., Fischler et al '91; Dreiner, Ross '93; Endo et al '10)

$$\lambda, \lambda' < 10^{-6} .$$

For small R-parity breaking, gravitino LSP has lifetime longer than age of the universe (Takayama, Yamaguchi '00). Reason: double suppression by inverse

Planck mass and R-parity breaking,

$$\tau_{3/2} \sim 10^{25} \mathrm{s} \left(\frac{\lambda}{10^{-6}}\right)^{-2} \left(\frac{m_{3/2}}{100 \mathrm{~GeV}}\right)^{-3} ,$$

consistent with gravitino dark matter.

Bound from thermal leptogenesis on reheating temperature: $T_R \gtrsim 10^9 \text{ GeV}$; implies $m_{3/2} \gtrsim 5 \text{ GeV}$ (gluino mass $m_{\tilde{g}} = 500 \text{ GeV}$) to avoid overclosure of the universe.BBN: NLSP lifetime is sufficiently short for $\lambda, \lambda' > 10^{-13}$,

$$\tau_{\rm NLSP} \simeq 10 \ {\rm s} \left(\frac{\lambda}{10^{-13}}\right)^{-2} \left(\frac{m_{\rm NLSP}}{100 \ {\rm GeV}}\right)^{-1}$$

Consistent cosmology (BBN, thermal leptogenesis, gravitino dark matter) for $10^{-13} < \lambda, \lambda' < 10^{-7}$ and $m_{3/2} \gtrsim 5$ GeV.

Spntaneous R-parity and B-L Breaking

Supersymmetric SM with $U(1)_{B-L}$ and R-invariance,

$$W_{\nu} = h_{ij}^{\nu} l_i \nu_j^c H_u + \frac{1}{M_{\rm P}} h_{ij}^n \nu_i^c \nu_j^c N^2 ;$$

 $\langle N \rangle$ generates Majorana masses for ν^c 's; superpotential for B-L breaking:

$$W_{B-L} = X(NN^c - \Phi^2) ,$$

with spectator field Φ (R-charge -1); $\langle\Phi\rangle$ breaks B-L,

$$\langle N \rangle = \langle N^c \rangle = \langle \Phi \rangle = v_{B-L} ,$$

and also R-parity ! Transmitted to low-energies by higher-dimensional

operators, leads to small bilinear R-parity breaking (Hall, Suzuki '83;...)

$$\Delta W = \mu_i H_u l_i , \quad \mu_i \sim m_{3/2} \Theta , \quad \Theta = \frac{v_{B-L}^2}{M_P^2} \simeq \frac{M_3}{M_P} .$$

Flavour dependence of R-parity breaking parameters (model with FN U(1) family symmetry, consistent with quark-lepton mass spectrum and leptogenesis):

$$h_{ij} \propto \eta^{Q_i + Q_j}, \quad \mu_i \propto \Theta \eta^{Q_i}, \quad \eta \ll 1.$$

ψ_i	10 ₃	10_2	10_{1}	5_3^*	5_2^*	5_1^*	ν_3^c	ν_2^c	ν_1^c	H_u	H_d	Φ
$\overline{Q_i}$	0	1	2	1	1	2	0	0	1	0	0	0

Table 1: Chiral U(1) charges. $10_i = (q_i, u_i^c, e_i^c), 5 = (d_i^c, l_i), i = 1 \dots 3.$

Seesaw mechanism for light neutrino masses determines scale of B-L and R-parity breaking:

$$v_{B-L} \simeq 10^{15} \text{ GeV}$$
, $\Theta = \frac{v_{B-L}^2}{M_P^2} \simeq 10^{-6}$,

hence Θ is small !!

Gravitino dark matter can be obtained by thermal gravitino production,

$$\Omega_{3/2}h^2 \simeq 0.5 \left(\frac{T_R}{10^{10} \text{GeV}}\right) \left(\frac{100 \text{GeV}}{m_{3/2}}\right) \left(\frac{m_{\tilde{g}}(\mu)}{1 \text{TeV}}\right)$$

 $\rightarrow \Omega_{DM} h^2$ for typical parameters of supergravity and leptogenesis (Bolz, WB, Plümacher '98)

II. Superparticle Mass Window

What are the constraints from leptogenesis and GDM on superparticle masses for unstable gravitinos, i.e., without BBN constraints? (different from stable gravitinos, \rightarrow L. Covi) GDM: upper bound on gluino mass for given reheating temperature; low energy observables: lower bound on NLSP.

Connection is model dependent; assume gaugino mass unification ($m_{\rm gluino} \simeq 6m_{\rm bino}$). Two typical examples (different ratios $m_{\rm NLSP}/m_{\rm gluino}$),

(A)
$$\chi$$
 NLSP: $m_0 = m_{1/2}$, $a_0 = 0$, $\tan \beta$;
(B) $\tilde{\tau}$ NLSP: $m_0 = 0$, $m_{1/2}$, $a_0 = 0$, $\tan \beta$.

Low energy observables: $m_h > 114 \text{ GeV}$, $BR(B_d \rightarrow B_s \gamma)$, $m_{charged} > 100 \text{ GeV}$. Possible hint for supersymmetry (Marciano, Sirlin '08),

$$a_{\mu}(\exp) - a_{\mu}(SM) = 302(88) \times 10^{-11}$$

Left: (A) gravitino: $m_{3/2} < 490$ GeV. *Right:* (B) stau: 100 GeV $< m_{\text{stau}} < 490$ GeV. *Red:* mass range favoured by a_{μ} .

III. CR Signatures from Decaying Gravitinos

Gravitino decays: $\psi_{3/2} \rightarrow \gamma \nu$; $h\nu, Z\nu, W^{\pm}l^{\mp}$, leads to continuous gammaray and antimatter spectrum: $\psi_{3/2} \rightarrow \gamma X, \bar{p}X, e^{\pm}X$; qualitative features from operator analysis (assumed hierarchy: $m_{SM} < m_{3/2} < m_{soft}$):

$$\mathcal{L}_{\text{eff}} = \frac{i\kappa}{\sqrt{2}M_{\text{P}}} \left\{ \bar{l}\gamma^{\lambda}\gamma^{\nu}D_{\nu}\phi\psi_{\lambda} + \frac{i}{2}\bar{l}\gamma^{\lambda}\left(\xi_{1}g'YB_{\mu\nu} + \xi_{2}gW_{\mu\nu}\right)\sigma^{\mu\nu}\phi\psi_{\lambda} \right\} + \text{h.c.}$$

R-parity breaking: κ ; further suppression: $\xi_{1.2} = \mathcal{O}(1/m_{3/2})$

dim 5 : $\psi_{3/2} \to h\nu, Z\nu, W^{\pm}l^{\mp}$; continuous spectrum ,

i.e., single term correlates antiproton flux, PAMELA and Fermi!

dim 6 : $\psi_{3/2} \rightarrow \gamma \nu$; gamma line

Minimal gravitino lifetime from antiproton flux

conservative propagation model (B/C ratio): MED model; require that total antiproton flux (including gravitino decays) lies below maximal flux from spallation (including astrophysical uncertainties) \rightarrow minimal lifetime; for $m_{3/2} = 200$ GeV one finds $\tau_{3/2}^{\min}(200) = 7 \times 10^{26}$ s; close to lower bound from recent Fermi-LAT search for photon lines.

Comparison with PAMELA & Fermi-LAT

Input: $m_{3/2} = 200 \text{ GeV}$, $\tau_{3/2} = 3.2 \times 10^{26} \text{ s}$, $\text{BR}(\psi \to \mu^{\pm} W^{\mp}, \tau^{\pm} W^{\mp}) \ll \text{BR}(\psi \to e^{\pm} W^{\mp})$ (why?); background: "Model 0" (Grasso et al, Fermi LAT '09) Conclusion: GALPROP & gravitino incompatible with PAMELA & Fermi !! [Explanation of PAMELA & Fermi by dark matter UNLIKELY !!]

Predicted Gamma-Ray Spectrum

'Minimal' lifetime from antiproton flux gives maximal gamma-ray flux:

left: $m_{3/2} = 200 \text{ GeV}, \ \tau_{3/2} = 7 \times 10^{26} \text{ s}; \ right: m_{3/2} = 100 \text{ GeV}, \ \tau_{3/2} = 1 \times 10^{27} \text{ s};$ now strongest bound on lifetime from Fermi-Lat data !!

IV. Signatures at the LHC

General bilinear R-parity breaking, superpotential and scalar potential, is characterized by 9 parameters ($i = 1 \dots 3$) (cf. Allanach et al '04, Barbier et al '05,...),

$$\Delta W = \mu_i H_u l_i$$

-\Delta \mathcal{L} = B_i H_u \tilde{l}_i + m_{id}^2 \tilde{l}_i^{\dagger} H_d + h.c.;

together with R-parity conserving superpotential and scalar mass terms,

$$W = \mu H_{u} H_{d} + h_{ij}^{u} q_{i} u_{j}^{c} H_{u} + h_{ij}^{d} d_{i}^{c} q_{j} H_{d} + h_{ij}^{e} l_{i} e_{j}^{c} H_{d} ,$$

$$-\mathcal{L}_{M} = m_{u}^{2} H_{u}^{\dagger} H_{u} + m_{d}^{2} H_{d}^{\dagger} H_{d} + (B H_{u} H_{d} + h.c.)$$

$$+ \tilde{m}_{lij}^{2} \tilde{l}_{i}^{\dagger} \tilde{l}_{i} + \tilde{m}_{eij}^{2} \tilde{e}_{i}^{c\dagger} \tilde{e}_{i}^{c} + \tilde{m}_{qij}^{2} \tilde{q}_{i}^{\dagger} \tilde{q}_{i} + \tilde{m}_{uij}^{2} \tilde{u}_{i}^{c\dagger} \tilde{u}_{i}^{c} + \tilde{m}_{dij}^{2} \tilde{d}_{i}^{c\dagger} \tilde{d}_{i}^{c} ,$$

this defines the considered extension of Standard Model.

Convenient basis of doublets: all R-parity breaking bilinear terms vanish; supersymmetric and non-supersymmetric field redefinitions:

$$\begin{aligned} H_d &= H'_d - \epsilon_i l'_i , \quad l_i = l'_i + \epsilon_i H'_d , \\ H'_d &= H''_d - \epsilon'_i \tilde{l}''_i , \quad \varepsilon H^*_u = \varepsilon H'^*_u - \epsilon''_i \tilde{l}''_i , \quad \tilde{l}'_i = \tilde{l}''_i + \epsilon'_i H'_d + \epsilon''_i \varepsilon H'^*_u , \end{aligned}$$

generates new Yukawa couplings

$$\begin{split} -\Delta \mathcal{L} &\supset \frac{1}{2} \lambda_{ijk} l_i \tilde{e}_j^c l_k + \hat{\lambda}_{ijk} l_i e_j^c \tilde{l}_k + \lambda'_{ijk} d_i^c q_j \tilde{l}_k + \hat{\lambda}'_{ijk} q_i u_j^c \varepsilon \tilde{l}_k^* \\ &+ h_{ij}^e (\epsilon'_i H_d + \epsilon''_i \varepsilon H_u^*) e_j^c \tilde{H}_d \\ &- \frac{g'}{\sqrt{2}} (\epsilon'_i H_d^\dagger - \epsilon''_i H_u^T \varepsilon) l_i \tilde{B} - \frac{g}{\sqrt{2}} (\epsilon'_i H_d^\dagger - \epsilon''_i H_u^T \varepsilon) \tau^I l_i \tilde{W}^I + \text{h.c.} , \\ &\lambda_{ikj} = -h_{ij}^e \epsilon_k - h_{kj}^e \epsilon_i , \dots, \ \hat{\lambda}'_{ijk} = -h_{ij}^u \epsilon''_k . \end{split}$$

Note: 108 R-parity breaking couplings in terms of 9 (1) parameters!

After electroweak breaking new mass mixings,

$$-\Delta \mathcal{L}_M \supset m^e_{ij} \frac{\zeta_i}{\cos\beta} e^c_j \tilde{H}_d - m_Z s_w \zeta^\dagger_i \nu_i \tilde{B} - m_Z c_w \zeta^\dagger_i \nu_i \tilde{W}^3 + \text{h.c.} ,$$

with

$$\zeta_i = \frac{\epsilon'_i v_d + \epsilon''_i v_u}{v} , \quad m^e_{ij} = h^e_{ij} v_d , \quad s_w = \frac{g'}{\sqrt{g^2 + g'^2}} .$$

Convenient set of independent parameters (i=1,...,3):

$$\zeta_i, \quad \epsilon_i, \quad \epsilon''_i,$$

Cosmic-ray data constrain (or determine!) these parameters, which leads to predictions for LHC.

Neutralino NLSP Decays

Matrix elements for gravitino decay, charged and neutral currents (7×7 neutralino mass matrix, 5×5 chargino mass matrix):

$$U_{\tilde{\gamma}\nu_{i}} = \zeta_{i} \frac{m_{Z}(M_{2} - M_{1})}{M_{1}M_{2}} s_{w}c_{w} \left(1 + \mathcal{O}\left(\frac{m_{Z}}{\mu}\right)\right) ,$$

$$U_{\chi_{1}^{0}\nu_{i}} = -\zeta_{i} \frac{m_{Z}}{M_{1}} s_{w} \left(1 + \mathcal{O}\left(\frac{m_{Z}}{\mu}\right)\right) , \quad U_{\chi_{1}^{0}e_{i}} = \dots$$

15

Lower bound on neutralino NLSP decay length

$$\tau_{\chi_1^0} = \frac{2c_w^2}{g_2^2} \left(\frac{M_1}{M_2 - M_1}\right)^2 \frac{m_{3/2}^3}{M_1 M_P^2} \tau_{3/2}(\gamma \nu) \left(1 + \mathcal{O}\left(\frac{m_Z}{\mu}\right)\right)$$

The Fermi-LAT data, $\tau_{3/2}(\gamma\nu)\gtrsim 5\times 10^{28}~s,~30~{\rm GeV}< E_{\gamma}<200~{\rm GeV}$, imply

$$c au_{\chi_1^0} \gtrsim 0.6 \ \mathrm{km} \left(\frac{m_{\chi_1^0}}{100 \ \mathrm{GeV}} \right)^{-1} ,$$

i.e., neutralino NLSP mostly decays outside detector!

$\tilde{\tau}_1$ -NLSP Decays

depend on flavour structure and pattern of supersymmetry breaking, e.g.:

- (a) universal breakings : $\mu_i \sim B_i \sim m_{id}^2 \propto \Theta \eta^{Q_i}$
- (b) soft breakings from RG running :

$$\epsilon_i \sim \Theta \eta^{Q_i} ; \quad \mu_i \sim B_i \sim m_{id}^2 \propto \Theta \frac{\eta^2}{16\pi^2} \ln \frac{\Lambda_{\rm GUT}}{\Lambda_{\rm EW}}$$

Decay length $c\tau_{\tilde{\tau}_1} \gtrsim 20 \ \mu m$, for largest $\epsilon_3 \simeq 10^{-5}$ consistent with cosmological bound; in general competition between leptonic and 2jet decay modes:

 $\tilde{\tau}_L - \tilde{\tau}_R$ mixing depends on $m_{\tilde{\tau}}$; characteristic branching ratios! For $\epsilon_3 \sim \dots \sim \zeta_{\text{gravitino}}^{\text{max}} \sim 10^{-9}$, one has $c\tau_{\tilde{\tau}_1} = \mathcal{O}(\text{km})!$

SUMMARY

- R-parity breaking theoretically well motivated
- Decaying gravitino DM viable possibility, naturally consistent with leptogenesis and BBN
- GALPROP & gravitino DM cannot explain PAMELA & Fermi-LAT data, astrophysical sources needed!
- Optimistic perspective: Fermi-LAT observes photon line $\rightarrow m_{3/2}$ & size of R-parity breaking; for NLSP, detailed predictions for LHC, hopefully decay in detector!