A Finely-Predicted Higgs Mass from A Finely-Tuned Weak Scale

Lawrence Hall University of California, Berkeley

LJH, Yasunori Nomura arXiv:0910.2235

Planck2010 CERN

I. Environmental Selection of the Weak Scale

II. A Higgs Mass Prediction to 0.3%

III. Beyond the Basic Prediction

How can we understand the

Weak Scale?

Two Conventional Options:

- I. Strong Dynamics
- 2. Weak Scale Supersymmetry

How can we understand the

Weak Scale?

Two Conventional Options:

- I. Strong Dynamics
- 2. Weak Scale Supersymmetry

"Stratus"

"Logos"

How can we understand the

Weak Scale?

Two Conventional Options:

- I. Strong Dynamics
- 2. Weak Scale Supersymmetry

A third option

3. Environmental selection in a multiverse

Cosmological constant problem, string landscape

"Stratus"

"Logos"

M. Luty

"Chaos"

- Our universe is part of a multiverse *
- ☀ The SM Higgs mass parameter scans:
- * Most universes have large v

Most universes

Most universes

Value of the weak scale understood What is the physics of the catastrophic boundary?

The fine-tuning is <u>not</u> eliminated * --- it is evidence for the multiverse

Most universes

Value of the weak scale understood What is the physics of the catastrophic boundary?

The Absence of Complex Nuclei

⋇ Increasing $\boldsymbol{\mathcal{V}}$ leads to instability of heavy nuclei $d \rightarrow u$...

* $v_c \simeq 2v_o$

⋇ $v_c \simeq 1.6 v_o$ Damour Donoghue arXiv:0712.2968

₩ Insufficient to select \mathcal{V} if Yukawa couplings scan

Agrawal, Barr, Donoghue, Seckel hep/ph/9707380

 \tilde{m}

 \mathcal{U}

Evidence for the multiverse is more impressive for large \tilde{m}

 \tilde{m}

 \mathcal{U}

how will we learn \tilde{m} ?

Arkani-Hamed, Dimopoulos, hep-th/0405159

- susy broken at a very high scale
- fermionic superpartners provide WIMP dark matter

- susy broken at a very high scale *
- * fermionic superpartners provide WIMP dark matter
- Several measurements would determine \tilde{m} *

Arkani-Hamed, Dimopoulos, hep-th/0405159

Arkani-Hamed, Dimopoulos, hep-th/0405159

- susy broken at a very high scale *
- * fermionic superpartners provide WIMP dark matter
- Several measurements would determine \tilde{m} *

* Convincing evidence for an elementary Higgs between v and \tilde{m} with

11 A Higgs Mass Prediction

The Simplest Model

 \widetilde{m} decoupled from vEnvironmental \mathcal{V} \longrightarrow *

 \tilde{m} scans with some distribution $f(\tilde{m})$ ☀

⋇ Observations do not favor low \tilde{m}

> Susy flavor problem, susy CP problem, gravitino problem, moduli problem, mu problem, B/muB problem, proton decay problem, *Little susy hierarchy problem*

The Simplest Model

Gauge Coupling Unification

is significantly improved by weak scale susy

Nothing to measure!

Experimental Tests

Nothing to measure!

A Supersymmetric Boundary Condition

At \tilde{m} we expect a susy boundary condition on the Higgs quartic

 \dot{U}

If $ilde{m}$ slides to M_{*} could this be destroyed?

A Supersymmetric Boundary Condition

At \mathcal{m} we expect a susy boundary condition on the Higgs quartic

 \dot{U}

⋇

If $ilde{m}$ slides to M_{*} could this be destroyed?

We expect to encounter extra dimensions

⋇

Susy breaking can be anywhere in a huge bulk extra dimensions

A Supersymmetric Boundary Condition

At \mathcal{m} we expect a susy boundary condition on the Higgs quartic

 \dot{v}

3-2-1

S.M.

⋇

If \widetilde{m} slides to M_* could this be destroyed?

We expect to encounter extra dimensions

⋇

Susy breaking can be anywhere in a huge bulk extra dimensions

Destruction of boundary condition requires special situation

SM up to
$$\tilde{m} = 10^{14} \,\mathrm{GeV} \,(\sim M_u)$$
 $\lambda(\tilde{m}) =$

*

 $\frac{g^2(\tilde{m}) + g'^2(\tilde{m})}{8} \cos^2 2\beta$

 $m_t = (173.1 \pm 1.3) \,\mathrm{GeV}$

 $\alpha_s = 0.1176$

 $\tilde{m} = 10^{14} \,\mathrm{GeV}$

SM up to
$$\tilde{m} = 10^{14} \,\mathrm{GeV} \,(\sim M_u)$$
 $\lambda(\tilde{m}) =$

⋇

✵

 $\frac{g^2(\tilde{m}) + g'^2(\tilde{m})}{8} \cos^2 2\beta$

 $m_t = (173.1 \pm 1.3) \,\mathrm{GeV}$

 $\alpha_s = 0.1176$

 $\tilde{m} = 10^{14} \,\mathrm{GeV}$

SM up to
$$\tilde{m} = 10^{14} \,\mathrm{GeV} \,(\sim M_u)$$
 $\lambda(\tilde{m}) =$

⋇

 $\frac{g^2(\tilde{m}) + g'^2(\tilde{m})}{8} \cos^2 2\beta$

 $m_t = (173.1 \pm 1.3) \,\mathrm{GeV}$

 $\alpha_s = 0.1176$

 $\tilde{m} = 10^{14} \,\mathrm{GeV}$

Many theories lead to this edge

Many Theories lead to the Upper Edge

 $* SU(2)_R$ $> 4d \operatorname{at} \tilde{m}$

 $H U(1)_{PQ}$ approximate symmetry on h_u, h_d $4d \operatorname{at} \tilde{m}$

 $> 4d \operatorname{at} \tilde{m}$

from profiles of h_u, h_d

If H lies predominantly in a single supermultiplet

upper edge results from $SU(2)_R$ invariant gauge interactions

Many Theories lead to the Upper Edge

 $* SU(2)_R$ $> 4d \operatorname{at} \tilde{m}$ upper edge results from $SU(2)_R$ invariant gauge interactions

If H lies predominantly in a single supermultiplet

 $\longrightarrow M_H \simeq 141 \,\mathrm{GeV}$

Many Theories lead to the Upper Edge-

 $* SU(2)_R$ $> 4d \operatorname{at} \tilde{m}$ upper edge results from $SU(2)_R$ invariant gauge interactions

$$SU(2)_R \longrightarrow \lambda(\tilde{m}) = \frac{g^2(\tilde{m}) + g'^2(\tilde{m})}{8}$$

⋇

What is the theoretical uncertainty?

If H lies predominantly in a single supermultiplet

$M_H \simeq 141 \,\mathrm{GeV}$

Threshold Corrections

Study the boundary condition

 $\lambda(\tilde{m}) = \frac{g^2(\tilde{m}) + g'^2(\tilde{m})}{8} (1 + \delta(\tilde{m}))$

δ has contributions from superpartner loops

From MSSM we are familiar with large stop corrections giving δM_H of up to 40%!!

*

*

This could ruin us! We can't measure the susy spectrum!

 $\propto y_t^4$

Threshold Corrections

Study the boundary condition

₩

₩

☀

✵

$$\lambda(\tilde{m}) = \frac{g^2(\tilde{m}) + g'^2(\tilde{m})}{8} (1)$$

 δ has contributions from superpartner loops

From MSSM we are familiar with large stop corrections giving δM_H of up to 40%!!

This could ruin us! We can't measure the susy spectrum!

$1 + \delta(\tilde{m})$

 $\propto y_t^4$

of 20

IR Convergence

RG scale to low energies

 λ attracted towards an IR quasi fixed point Reduces δ by factor 6

IR Convergence

⋇ RG scale to low energies

to Higgs mass reduced compared to MSSM:

The Prediction

※Compute complete I loop leading log threshold corrections at
$$\tilde{m}$$
They vanish if we choose to match at $\tilde{m} \simeq \frac{m_{\lambda}^{1.6}}{m_{\tilde{t}}^{0.6}}$ **※**The leading finite correction is $\delta_s = \frac{3y_t^4}{32\pi^2\lambda} \left(\frac{2A_t^2}{m_{\tilde{t}}^2} - \frac{A_t^4}{6m_{\tilde{t}}^4}\right) \simeq$

ie

 $\delta_s \simeq 0.01$ for $A_t = m_{\tilde{t}}$

 $\simeq 0.007 \left(\frac{2A_t^2}{m_{\tilde{t}}^2} - \frac{A_t^4}{6m_{\tilde{t}}^4} \right)$
The Prediction

$$\simeq 0.007 \left(\frac{2A_t^2}{m_{\tilde{t}}^2} - \frac{A_t^4}{6m_{\tilde{t}}^4} \right)$$

$$= m_{ ilde{t}}$$

 $\delta m_t = +1.3 \,\mathrm{GeV}$

$$\delta_s$$
 0.04
 0.02
 0

 $\alpha_s = 0.1176$

 $m_t = 173.1 \,\mathrm{GeV}$

The Prediction

$$M_H = 141.0 \text{ GeV} + 1.8 \text{ GeV} \left(\frac{m_t - 173.1 \text{ GeV}}{1.3 \text{ GeV}} \right) - 1.0 \text{ GeV} \left(\frac{\alpha_s(M_Z) - 0.1176}{0.002} \right) + 0.14 \text{ GeV} \left(\log_{10} \frac{\tilde{m}}{10^{14} \text{ GeV}} \right) + 0.10 \text{ GeV} \left(\frac{\delta}{0.01} \right) \pm 0.5 \text{ GeV},$$

☀

The Prediction

$$M_H = 141.0 \text{ GeV} + 1.8 \text{ GeV} \left(\frac{m_t - 173.1 \text{ GeV}}{1.3 \text{ GeV}} \right) - 1.0 \text{ GeV} \left(\frac{\alpha_s(M_Z) - 0.1176}{0.002} \right) + 0.14 \text{ GeV} \left(\log_{10} \frac{\tilde{m}}{10^{14} \text{ GeV}} \right) + 0.10 \text{ GeV} \left(\frac{\delta}{0.01} \right) \pm 0.5 \text{ GeV},$$

$$ilde{m} = 10^{14\pm2}\,{
m GeV}$$
 the the $\delta pprox O(0.01-0.03)$ from

*

✵

Allowing

the theoretical uncertainties from the high scale are

ainties $\delta M_H \sim \pm 0.4\,{
m GeV}$ are 0.3%~!!

JJJBeyond (SM+GR)

New Physics Near m

*	SU(5):	sm
*	SO(10):	$\delta M_H =$

⋇ High scale see-saw for neutrino masses:

Typically

Except in special regions, e.g. $\tilde{m} > M_R \approx 10^{15} \,\mathrm{GeV}$ $\delta M_H \approx +1 \,\mathrm{GeV}$

Change to Higgs mass prediction

all

 $= +2.4 \,\mathrm{GeV}$

negligible

New Physics Below m

Higgs mass prediction *rapidly destroyed*

* Additions to gauge group

* New interactions of Higgs or top quark

⋇ New contributions to 3-2-1 beta functions

New Physics Below m

Higgs mass prediction rapidly destroyed

* Additions to gauge group

* New interactions of Higgs or top quark

⋇ New contributions to 3-2-1 beta functions

New Physics Below m

Higgs mass prediction rapidly destroyed

2.0

1.5

*	Axion	$f_a \sim M_*$	wi	th $ heta_{mis}$
*	Thermal freeze-out rel	ic		
			*	mass of
	with selection	n acting on	*	approx
			*	approx

Elor, Goh, Kumar, Hall, Nomura 0912.3942

selected to be small

f fermion non-R symmetry R symmetry

*	Axion	$f_a \sim M_*$	wi	th $ heta_{mis}$
*	Thermal freeze-out re	elic		
			*	mass of
	with selection acting on		*	approx
			*	approx

* Five theories with states at \tilde{m} of MSSM + singlets

	Ι	II 🔆	III 🔆	IV 🔆	V
States at TeV scale	SM	$(SM + \tilde{w})$	$(SM + \tilde{h}/\tilde{s})$	$(SM + \tilde{g}, \tilde{w}, \tilde{b}, \tilde{h})$	MSSM
Dark Matter	QCD axion	WIMP LSP	WIMP LSP	WIMP LSP	WIMP LSP
DM selection acts on	θ_{mis}	$m_{ ilde w}$	ϵ	ϵ_R	$ ilde{m}$
New parameters	f_a, θ_{mis}	$m_{ ilde w}$	μ,m,y	$m_{ ilde{g}}, m_{ ilde{w}}, m_{ ilde{b}}, \mu, aneta$	MSSM set
Gauge coupling unif.	\mathbf{SM}	$pprox \mathrm{SM}$	$\approx \mathrm{MSSM}$	$\approx \mathrm{MSSM}$	$\approx MSSM$
Higgs mass	$141 { m GeV}$	$142 {\rm GeV}$	$(141-210) \mathrm{GeV}$	$(114-154) {\rm GeV}$	$(114-125?) \mathrm{GeV}$

Elor, Goh, Kumar, Hall, Nomura 0912.3942

selected to be small

f fermion

non-R symmetry

R symmetry

What do we learn if the LHC discovers the Higgs at 141 GeV and nothing else?

What do we learn if the LHC discovers the Higgs at 141 GeV and nothing else?

Supersymmetry Discovered! $\tilde{m} \sim 10^{14 \pm 1} \, \text{GeV}$ ⋇

String theory, with important change to string phenom.

What do we learn if the LHC discovers the Higgs at 141 GeV and nothing else?

Supersymmetry Discovered!

 $\tilde{m} \sim 10^{14 \pm 1} \,\mathrm{GeV}$

 \longrightarrow

String theory, with important change to string phenom.

sizable threshold corrections

 $\frac{1}{R} \sim 10^{14 \pm 1} \, \mathrm{GeV}?$

What do we learn if the LHC discovers the Higgs at 141 GeV and nothing else?

Supersymmetry Discovered!

 \longrightarrow

String theory, with important change to string phenom.

 $\tilde{m} \sim 10^{14 \pm 1} \, \mathrm{GeV}$

Approx U(I) PQ

or Higgs from single supermultiplet (>4d)

sizable threshold corrections

 $\frac{1}{R} \sim 10^{14 \pm 1} \, \mathrm{GeV}?$

What do we learn if the LHC discovers the Higgs at 141 GeV and nothing else?

⋇

Axion DM is strongly motivated -- but Higgsino and wino WIMPs possible

sizable threshold corrections

 $\frac{1}{R} \sim 10^{14 \pm 1} \, \mathrm{GeV}?$

Strong Evidence for the Multiverse

 $\tilde{m} \sim 10^{14 \pm 1} \,\mathrm{GeV}$

fine tuning of order $1 \text{ in } 10^{24 \pm 2}$

Strong Evidence for the Multiverse * $\tilde{m} \sim 10^{14 \pm 1} \,\mathrm{GeV}$ The Higgs boson is elementary up to fine tuning of order $1 \text{ in } 10^{24 \pm 2}$ ⋇ Only known understanding: **Environmental selection** on a multiverse

Most universes have no observers

Strong Evidence for the Multiverse

 $\tilde{m} \sim 10^{14 \pm 1} \,\mathrm{GeV}$

⋇ Only known understanding:

Environmental selection on a multiverse

discover new understanding of fine tuning Only ways out: *

> $M_H = 141 \text{ GeV}$ an accident *

fine tuning of order $1 \text{ in } 10^{24 \pm 2}$

Most universes have no observers

Strong Evidence for the Multiverse

 $\tilde{m} \sim 10^{14 \pm 1} \, \mathrm{GeV}$

⋇ Only known understanding:

Environmental selection on a multiverse

discover new understanding of fine tuning Only ways out: *

- $M_H = 141 \text{ GeV}$ an accident *
- Crucial to reduce experimental * uncertainties on $m_t, \ lpha_s$

fine tuning of order $1 \text{ in } 10^{24 \pm 2}$

Most universes have no observers

Strong Evídence for the Multíverse

 $\tilde{m} \sim 10^{14 \pm 1} \, \mathrm{GeV}$

fine tuning of order

⋇ Only known understanding:

Environmental selection on a multiverse

discover new understanding of fine tuning Only ways out: *

 $M_H = 141 \text{ GeV}$ an accident

Crucial to reduce experimental * uncertainties on $m_t, \ lpha_s$

⋇ Need better understanding of the physics of the catastrophic boundary

Search for more boundaries!

⋇

$1 \text{ in } 10^{24 \pm 2}$

New strong dynamics

Weak scale supersymmetry

Multiverse

Do you know which one is correct? I don't!

Stratus

Logos

Chaos

Neutríno Masses

Neutríno Masses

Except in special regions, e.g.

⋇

 $\tilde{m} > M_R \approx 10^{15} \, \mathrm{GeV}$ giving $\delta M_H \approx +1 \, \mathrm{GeV}$

 $M_H \sim 190 \,\mathrm{GeV}$

 $\lambda(M_u) > 2$

but $\pm 10 \,\text{GeV}$ for $M_u = 10^{14 \pm 2} \,\text{GeV}$

 $M_H \sim 190 \,\mathrm{GeV}$

 $\lambda(M_u) > 2$

but $\pm 10 \,\mathrm{GeV}$ for $M_u = 10^{14 \pm 2} \,\text{GeV}$

Higgs in single supermultiplet

 $M_H \sim 190 \,\mathrm{GeV}$

but $\pm 10 \,\mathrm{GeV}$ for $M_u = 10^{14 \pm 2} \,\text{GeV}$

 $M_H \sim 128 \,\mathrm{GeV}$ $\lambda(M_u) = 0$ eg PGB Higgs

but $\pm 10 \,\mathrm{GeV}$ for $M_u = 10^{14 \pm 2} \,\text{GeV}$ unstable

Feldstein, Hall, Watari hep-ph/0608121

 $M_H \sim 128 \,\mathrm{GeV}$ $\lambda(M_u) = 0$

eg PGB Higgs

Gauge Coupling Unification

$\delta \equiv \sqrt{(g_1^2 - \bar{g}^2)^2 + (g_2^2 - \bar{g}^2)^2 + (g_3^2 - \bar{g}^2)^2} / \bar{g}^2$

SM $SM + \tilde{h}/\tilde{s}$: $SM + \tilde{w}$:

Higgs Mass Prediction $SM + \tilde{h}/\tilde{s}$

* Supersymmetric boundary condition

*

 $\lambda(\tilde{m}) = \frac{g^2(\tilde{m}) + g'^2(\tilde{m})}{2} (1 + \delta(\tilde{m}))$

Higgs Mass Prediction $SM + \tilde{h}/\tilde{s}$

Dark Matter: $SM + \tilde{h}/\tilde{s}$

Dark Matter: $SM + \tilde{h}/\tilde{s}$

Direct detection

Dark Matter: $SM + \tilde{h}/\tilde{s}$

Direct detection

 $\mathcal{D}ark$ Matter: $SM + \tilde{w}$:

Dark Matter: $SM + \tilde{w}$:

Selection of Dark Matter

As DM mass increases we hit boundary where galactic disks do not fragment ⋇ ⋇ In absence of DM galactic size perturbations removed by Silk damping ⋇ Multi-parameter scan: unknown

Tegmark, Aguirre, Rees, Wilczek astro-ph/0511774