LHC AND THE ORIGIN OF NEUTRINO MASS

Goran Senjanović

ICTP

A. Maiezza, M. Nemevšek, F. Nesti

 $m_{\nu} \ll m_e$ - interesting puzzle?

window to new physics

Neutrino mass in the standard model

Fermi-like effective: Weinberg d = 5 operator

$$\mathcal{L} = Y_{eff} \frac{LHHL}{\Lambda}$$

L - lepton doublet H - Higgs doublet

$$m_{\nu} = Y_{eff} \frac{v^2}{\Lambda}$$
 neutrino mass – Majorana

perturbative cut-off: $\Lambda \simeq 10^{14} GeV$

• clue why $m_{\nu} \ll m_e$?

case for new physics

Violation of Lepton Number : $\Delta L = 2$

• neutrino-less double beta decay $\nu 0\beta\beta$ a text-book fact

Racah '37; Furry '38

• same sign charged lepton pairs in colliders

Keung, G.S., '83

at which scale: $\Lambda = ?$

 $Fermi \rightarrow renormalizable W picture$

Origin of neutrino mass: seesaw

Single set of new particles

• fermion singlet $S_F = N \ (Y = 0)$: Type I

Minkowski, '77; Mohapatra, G.S., '79 Gell-Mann et al, '79; Glashow, '79; 'Yanagida, 79

• boson weak triplet Δ (Y = 2): Type II

Lazarides et al, '80; Mohapatra, G.S., '80

• fermion weak triplet T_F (Y = 0): Type III Foot et al, '86

standard lore (especially I and II)

More useful than Weinberg d=5 operator?

weak interactions: perturbative cut-off 300 GeV

Marshak, Sudarshan; Feynman, Gell-Mann '58

until we had a theory behind \rightarrow Standard Model

The theory behind seesaw?

L-R symmetry

Pati, Salam; Mohapatra, G.S. '74

 $SU(2)_L \times U(1)_{B-L} \times SU(2)_R$

- $W_L \Rightarrow W_R$: LR at high energy
- $\nu_L \Rightarrow \nu_R$: massive neutrinos
- seesaw: connects m_{ν} to scale of LR restoration

$$m_N \propto M_{W_R} \quad \Rightarrow \ m_\nu \propto M_{W_L}^2 / M_{W_R}$$

Minkowski, Mohapatra, G.S.

V-A limit:

 M_{W_R} infinite \Rightarrow neutrinos massless

idea of P restoration as old as of P violation

Lee, Yang '56

mirror fermions

$f_{L(R)} \leftrightarrow F_{R(L)}$

3 more generations: V + A?

Gell-Mann, Minkowski '75

Gell-Mann, Ramond, Slansky '79

Wilczek, Zee '82

G.S., Wilczek, Zee '84

Berezhiani, Mohapatra '90's

L - R theory: neutrino mass and seesaw

(both type I and II)

L number violation

LHC?

Model content: bidoublet $\phi \sim (h_{light}, H_{heavy})$, triplets Δ_L , Δ_R ,

$$\langle \Delta_L \rangle = \begin{pmatrix} & \\ v_L & \end{pmatrix}, \quad \langle \Delta_R \rangle = \begin{pmatrix} & \\ v_R & \end{pmatrix}, \quad \langle \phi \rangle = \begin{pmatrix} v & \\ & v' \end{pmatrix}$$

spontaneously with $v_L \ll v' < v \ll v_R$.

Mohapatra GS '75 '81

- Quark, Dirac lepton masses from $\bar{\psi}_L(Y_\phi \phi + \tilde{Y}_\phi \tilde{\phi})\psi_R$ $M_u = |v| Y_\phi + |v'| e^{i\alpha} \tilde{Y}_\phi$ $M_d = |v'| Y_\phi + |v| e^{i\alpha} \tilde{Y}_\phi$
- Majorana neutrino masses, in addition to Dirac

$$m_{LL} = Y_{\Delta} \langle \Delta_L \rangle \quad \ll \quad m_{RR} = Y_{\Delta} \langle \Delta_R \rangle$$

- Spectrum: W_R , ν_R , $\Delta_{L,R}$ in the TeV region?
- *H* should be very heavy

(tree-level FC)

Senjanović, GS '80, ..., Zhang et al '07

Neutrino-less double beta decay

 $^{76}\text{Ge} \not\rightarrow^{76} \text{As} e\bar{\nu}$

 $^{76}\text{Ge} \rightarrow ^{76}\text{Se}\ ee$

In general m_{ν} not directly connected to $\nu 0\beta\beta$ decay:

depends on the completion of the SM

Example:

LR symmetry with low W_R , ν_R masses: a nonzero $\nu 0\beta\beta$ decay

even with $y_D, m_{\nu} \to 0$

Colliders

To trace see-saw : measure $\Delta L = 2$ in colliders

Keung, G.S., '83

produce right-handed neutrinos through W_R

- direct test of parity restoration
- direct test of lepton number violation
- determination of W_R and N masses

Search at LHC

 $W_R \rightarrow 4$ (2) TeV and ν_R in 100 - 1000 GeV 14 (7) TeV and integrated luminosity of 30 fb^{-1}

Ferrari et al, '99; Gninenko et al, '07

of events for $L = 8 fb^{-1}$

1.8; 2, 0; 2.4; 2.6; 3.0; 3.4

Nesti, talk at CERN Collider meeting '09 and parallel talk

 $\propto (Y_{\Delta})_{ij} (Y_{\Delta}^*)_{kl}$

$$Y_{\Delta} = \frac{g_R}{M_{W_R}} V_R^T M_N V_R$$

Type II

 $V_R = K_e V_L^*$

\Downarrow

predictions

Nemevšek, Nesti, Tello, GS to appear

Limits on M_R

- direct limit: $M_R \ge 800 \,\text{GeV}$ (from dijets@DO)
- strong sensibility from $K_L K_S$ mass difference

Beall, Bander, Soni '81 Mohapatra, G.S., Tran '83 parallel talk by Nemevšek depends on LR symmetry

• LR = P (parity) - canonical

hermitian Yukawas: $V_L = V_R$ - up to phases best limit claimed: combined EDM and ϵ'

 $M_{W_R} \gtrsim 4 \, {
m TeV}$

Zhang, An, Ji, Mohapatra '07

even stronger limit claimed $M_{W_R} \gtrsim 10 \, {\rm TeV}$

Xu, An, Ji '09

\Rightarrow LR **NOT**@LHC?

recently revisited:

$$M_{W_R} \gtrsim 3 \,\mathrm{TeV}$$

Maiezza, Nemevšek, Nesti, G.S. '10

• LR = C (charge conjugation)

symmetric Yukawas: $V_L = V_R^*$ - up to phases best limit from $K_L - K_S$:

$M_{W_R} \ge 2.5 \,\mathrm{TeV}$ $M_{Z_R} \ge 4 \,\mathrm{TeV}$

Maiezza, Nemevšek, Nesti, G.S. '10

parallel talks by Nesti, Nemevšek

additional motivation:

the tension regarding CP violation in the B_s and B_d systems

disagreement with SM at the level of few sigma, but going up and down

UTfit: Bona et al '08

could be relieved in LR theory - needs more work it would correlate the W_R and new Higgs masses

parallel talks by Nemevšek, Nesti

Simple predictive GUT with measurable seesaw?

What is the minimal realistic GUT?

Minimal SU(5)

Georgi-Glashow model:

$$24_H + 5_H$$

 $3(10_F + \overline{5}_F)$
ugly: asymmetric matter, fine-tuning
- but predictive

RULED OUT

- 1. gauge couplings do not unify
 - 2 and 3 meet at 10^{16} GeV (as in susy),
 - but 1 meets 2 too early at $\approx 10^{13}~GeV$
- 2. neutrinos massless (as in the SM)

Add just one extra fermionic 24_F

Bajc, G.S., '06 ; Bajc, Nemevsek, G.S., '07

maintains the ugliness of the minimal model asymmetric matter, even more fine tuning, \Rightarrow but also its predictivity

 $\mathbf{SU}(3)_C imes \mathbf{SU}(2)_L imes \mathbf{U}(1)_Y$ decomposition

 $24_F = (1,1)_0 + (1,3)_0 + (8,1)_0 + (3,2)_{5/6} + (\bar{3},2)_{-5/6}$ singlet *S* triplet *T*

$$\mathcal{L}_{Y\nu} = L_i \left(y_T^i T + y_S^i S \right) H + h.c.$$

Mixed Type I and Type III seesaw:

$$M_{\nu}^{ij} = v^2 \left(\frac{y_T^i y_T^j}{m_T} + \frac{y_S^i y_S^j}{m_S} \right)$$

 \Rightarrow one massless neutrino \rightarrow hierarchical spectrum

$M_{GUT} \gtrsim 10^{15.5} { m GeV} { m (p decay)}$ $\Rightarrow m_3 \lesssim 1 { m TeV}$

 $m_3^{max} - M_{GUT}$ at two loops

Seesaw at LHC

Probing neutrino parameters

$$\Gamma_T \approx m_T |y_T|^2$$
 $\tau_T \leq \left(\frac{200 GeV}{M_T}\right)^2 0.5 \,\mathrm{mm}$

The best channel is like-sign dileptons + jets $BR(T^{\pm}T^{0} \rightarrow l_{i}^{\pm}l_{j}^{\pm} + 4 \text{ jets}) \approx \frac{1}{20} \times \frac{|y_{T}^{i}|^{2}|y_{T}^{j}|^{2}}{(\sum_{k}|y_{T}^{k}|^{2})^{2}}$

Same couplings y_T^i contribute to

 ν mass matrix and T decays

$$vy_T^{i*} = \begin{cases} i\sqrt{M_T} \left(U_{i2}\sqrt{m_2^{\nu}}\cos z + U_{i3}\sqrt{m_3^{\nu}}\sin z \right), & \text{NH} \quad (m_1^{\nu} = 0), \\ i\sqrt{M_T} \left(U_{i1}\sqrt{m_1^{\nu}}\cos z + U_{i2}\sqrt{m_2^{\nu}}\sin z \right), & \text{IH} \quad (m_3^{\nu} = 0). \end{cases}$$

Casas, Ibarra '01; Ibarra, Ross '03

Scanning over whole parameter space

normal hierarchy

inverse hierarchy

$$a_T^i \equiv \left| y_T^i \right| \sqrt{rac{v}{2M_T}}$$

Assuming Majorana phase $\Phi = 0$

normal hierarchy

inverse hierarchy

$$a_T^i \equiv \left| y_T^i \right| \sqrt{rac{v}{2M_T}}$$

Incremental increase of cuts on the signal $(M_T = 200 \text{ GeV})$:

$\textbf{Cuts} \Downarrow$	$\sigma_{ m sig.}({ m fb})$
$p_T(\ell) > 15 (GeV)$	35
$p_T(jets) > 20$ (GeV)	20
$\mid \eta(\ell) \mid < 2.5$	16
$\mid \eta(jets) \mid < 3$	14
$\Delta R_{\ell\ell} > 0.3$	13.8
$\Delta R_{\ell j} > 0.5$	12
$\Delta R_{jj} > 0.5$	10

Francheschini, Hambye, Strumia '08; del Aguila, Aguilar-Saveedra '08

Arhrib, Bajc, Ghosh, Han, Huang, Puljak, G.S. '09 '10

Conclusions

- experimental probe of Majorana neutrino mass origin lepton number violation at LHC – a high energy analogue of neutrino-less double beta decay
- L-R theory: possible discovery of $W_R \rightarrow 4 \text{ TeV}$ $\nu_R \rightarrow \text{TeV}$ through LR restoration and L violation
- explicit example of a predictive GUT theory SU(5) with a fermionic adjoint
- weak fermionic triplet predicted in the TeV range LHC@14 TeV \rightarrow 450 (700) GeV with $L = 10(100)ft^{-1}$
- possible to get information on unmeasured neutrino parameters

R measures separations

$$R=[(\Delta\phi)^2+(\Delta\eta)^2]^{1/2}$$

where $\Delta \phi$ and $\Delta \eta$ are the azimuthal angular separation and (pseudo) rapidity difference between two particles