

LHC and Tevatron physics

Hitoshi Murayama (IPMU Tokyo, Berkeley) Planck 2010, CERN, June 1, 2010

dark matter and dark energy from topology

Hitoshi Murayama (IPMU Tokyo, Berkeley) Planck 2010, CERN, June 1, 2010

HM & Jing Shu, PLB 686, 162 (2010)

Second Birthday

~60% non-Japanese

PML

PN

occupancy since Jan 18, 2010 ~5900 m²

interaction area ~400m² like a European town square *Piazza Fujiwara*

dark matter and dark energy from topology

Hitoshi Murayama (IPMU Tokyo, Berkeley) Planck 2010, CERN, June 1, 2010

HM & Jing Shu, PLB 686, 162 (2010)

Conclusion

- so-called Kibble mechanism grossly underestimates the initial density of topological defects
- Pati-Salam below inflation excluded by monopole constraints
- hidden monopoles can be dark matter
- frustrated domain walls may be dark energy, easily evading the CMB constraint

Generality

CENTER FOR

PHYSICS

Topological defects

- common interest among AMO, condensed matter, particle physics, algebraic geometry
- symmetry breaking $G \rightarrow H$
- coset space G/H describes vacua
- can the space be mapped non-trivially into the coset space?
- $\pi_0(G/H) \neq 0$: domain walls
- $\pi_{I}(G/H) \neq 0$: string (vortex)
- $\pi_2(G/H) \neq 0$: monopole
- $\pi_3(G/H) \neq 0$: skyrmion

Topological DM

- little Higgs theories rely on coset spaces
- e.g. G/H=SU(5)/SO(5)
- non-trivial topology $\pi_3(G/H)=Z_2$
- Z₂ skyrmion ~10 TeV, a kind of "baryon"
- thermal relic gives good abundance
- decays like proton decay in GUT
- skyrmion \rightarrow mesons $\rightarrow (\mu^+\mu^-)^n$

HM and Jing Shu

Little Higgs models

Models	G	Н	π ₃ (G/H)
Minimal Moose	SU(3) ²	SU(3)	Z
Littlest Higgs	SU(5)	SO(5)	Z ₂
SO(5) Moose	SO(5) ²	SO(5)	Z

skyrmions

skyrmion is topological soliton in G/H
In QCD, G/H=SU(3), π₃(G/H)=Z
skymion is baryon in QCD (Witten)
It will likely thermalize
therefore subject to the unitarity limit m<110 TeV (J=0)
a very heavy dark matter candidate

consistent with "natural" EWSB

other defects?

- Other defects are formed by the mismatch in order parameters beyond correlation length
- monopoles, strings, walls

CENTER FOR

Kibble mechanism

- Kibble (1976) argued that phase transitions in expanding universe produce defects
- second-order phase transitions have infinite correlation length $\xi \propto |T-T_c|^{-\nu}$
- Therefore, all regions of causally connected space choose the same vacuum on *G*/*H*
- However, there is a finite horizon size $H^{-1} \approx M_{Pl}/T^2$
- Kibble: about one defect per horizon

Time scale

- We know that we need to cool the material slowly to grow a bigger crystal (e.g. clear ice in the freezer)
- How does time scale come into the discussion?
- It takes time for things to line up! relaxation
- quenched phase transition
- general discussion by Zurek (1985)

Time sq

 We know that we need material slowly to grow (e.g. clear ice in the free NdFeB-Aufschnitt

- How does time scale come into the discussion?
- It takes time for things to line up! relaxation
- quenched phase transition
- general discussion by Zurek (1985)

"Cosmological Experiments in Superfluid Helium?"

PMU Phase transition revisited

BERKELEY CENTER FOR THEORETICAL PHYSICS

- correlation length: $\xi \propto |T T_c|^{-\nu}$
- relaxation time: $T \propto |T T_c|^{-\mu}$
- It takes an infinite amount of time for the system to "line up" at T_c
- If the system cools too quickly, it won't line up even within a causally connected region

time scale

- proximity to T_c : $\varepsilon = |T_c - T|/T_c$
- relaxation time: $T=T_0 \ \epsilon^{-\mu}$
- quenching rate: $\tau_Q = (t - t_c)/\epsilon$
- available time for relaxation: $T(t_*) = |t_* - t_c|$
- $\tau_0 \epsilon(t_*)^{-\mu} = \epsilon(t_*) \tau_Q$
- $\epsilon(t_*) = |\tau_Q/\tau_0|^{-1/(1+\mu)}$

time scale

- with the available time given by $\epsilon(t*) = |T_Q/T_0|^{-1/(1+\mu)}$
- the maximum correlation $\xi = \xi_0 \epsilon(t_*)^{-\nu} = \xi_0 |\tau_Q/\tau_0|^{\nu/(1+\mu)}$
- the order parameter cannot "line up" beyond this length scale

relativistic

- correlation length: $\xi \propto |T T_c|^{-\nu}$
- relaxation time: $T \propto |T T_c|^{-\mu}$
- classically, $\mu = v$
- dimensional analysis: $\xi_0 \approx \tau_0 \approx T_c^{-1}$
- $\tau_Q = (t t_c)/\epsilon = 2H(T_c)^{-1}$
- $\xi = \xi_0 \epsilon(t_*)^{-\nu} = \xi_0 |\tau_Q/\tau_0|^{\nu/(1+\mu)}$ $\approx T_c^{-1} |M_{Pl}/T_c|^{\nu/(1+\nu)}$

defect formation

BERKELEY CENTER FOR THEORETICAL PHYSICS

- Kibble estimate: one per $H^{-1} \approx T_c^{-1} |M_{Pl}/T_c|$
- Zurek estimate: one per $\xi \approx T_c^{-1} |M_{Pl}/T_c|^{\nu/(1+\nu)}$
- Landau theory: $L = \kappa (T T_c) T_c \varphi^2 + \lambda \varphi^2$
- $\xi = \tau = |\kappa(T T_c)T_c|^{-1/2}, \mu = \nu = 1/2$
- Zurek estimate: one per $\xi \approx T_c^{-1} |M_{Pl}/T_c|^{1/3}$
- enormous enhancement by $|M_{Pl}/T_c|^{2/3}!$

RKELEY CENTER FOR

Experimental tests

- D. Stamper-Kurn group (Berkeley)
 spinor BEC with ⁸⁷Rb in F=I states H = -μF² + λF²_γ
- O(2) symmetry
- when $\lambda >> \mu$, O(2) unbroken
- quickly reduce λ (quantum quench)
- many domains with different O(2) breaking

Experimental tests

D. Stamper-Kurn group (Berkeley)

Tuesday, June 1, 2010

Vortex formation

Tuesday, June 1, 2010

b

Monopoles

Magnetic monopoles

- Standard Model $G_{SM}=SU(3)_C \times SU(2)_L \times U(1)_Y$
- It has U(I)
- Georgi-Glashow SU(5) Grand Unification
- $\pi_3(SU(5)/G_{SM})=Z$
- Pati-Salam G_{PS} =SU(4)_C×SU(2)_L×SU(2)_R
- $\pi_3(G_{PS}/G_{SM})=Z$

monopoles

De MU Berkeley center for magnetic monopoles

- monopoles annihilate if slowed down by plasma (Preskill)
- we used to think only GUT-scale monopoles are important
- now with enhancement by $(M_{Pl}/T_c)^2$, much lower T_c would be relevant
- Pati-Salam below inflation is all dead!

PMUhidden monopole BERKELEY CENTER FOR dark matter

- But monopole may not couple to QED
- "hidden monopole"
- Then it could well be dark matter!

Domain Walls

Alexander Friedland, HM, Maxim Perelstein PRD 67, 043519 (2003) with updates

Domain Walls

- When a discrete symmetry breaks, domain walls form
- it is usually assumed that the network of domain walls (or strings) scale, namely they keep simplifying so that there is practically only one defect per horizon
 initial condition doesn't
- initial condition doesn't matter

Domain Walls

- When a discrete symmetry breaks, domain walls form
- it is usually assumed that the network of domain walls (or strings) scale, namely they keep simplifying so that there is practically only one defect per horizon
 initial condition doesn't
- initial condition doesn't matter

Frustration

- If the discrete symmetry group is complicated (e.g., large Z_N, non-abelian), network may not find a way of simplifying
- frustrated network only gets stretched by the expansion of the Universe
- compare to 1st law of thermo: $\rho \propto R^{-3(1+w)}$
- pointlike defects: w=0, $\rho \propto R^{-3}$
- string network: w = -1/3, $\rho \propto R^{-2}$
- wall network: w = -2/3, $\rho \propto R^{-1}$

Previous study

With Friedland and Perelstein, we studied the possibility of domain-wall dark energy
Used Kibble mechanism
CMB anisotropy constraint severe
needed T_c≈ 100 keV
walls well-behaved, prob to miss one p<10⁻³
shouldn't break for more than T_c/T₀=10⁸

Revised study

- Used Kibble-Zurek mechanism
- CMB anisotropy constraint trivial
- need Tc \approx 10 eV
- walls don't need to be well-behaved, prob to miss one $p \approx I \text{ OK}$
- shouldn't break for more than $T_c/T_0 = 10^4$

T_c constraints

3 sigma away

- Admittedly, the current constraints from WMAP +BAO+SNe do not prefer w=-2/3
- w=-0.99±0.11
- systematics?
- subdominant contribution?

Percival et al arXiv:0907.1660v3

Conclusion

- so-called Kibble mechanism grossly underestimates the initial density of topological defects
- Pati-Salam below inflation excluded by monopole constraints
- hidden monopoles can be dark matter
- frustrated domain walls may be dark energy, easily evading the CMB constraint