Tree Level

Gauge Mediation

Andrea Romanino SISSA

with Nardecchia, Ziegler
arXiv:0909.3058 (JHEP)
arXiv:0912.5482 (JHEP)
and Monaco (in progress)

A wide class of models of supersymmetry breaking

MSSM

Hidden
sector

Observable sector

A wide class of models of supersymmetry breaking

SUSY breaking

Hidden
sector

MSSM

Observable sector

Z chiral superfield
$\langle Z\rangle=F \theta^{2}$
$F \gg(M z)^{2}$
SM singlet

A wide class of models of supersymmetry breaking

SUSY breaking

Hidden
sector

MSSM

Observable sector

Q chiral superfield

A wide class of models of supersymmetry breaking

SUSY breaking

Hidden
sector

MSSM

Observable sector

Z chiral superfield
$\langle Z\rangle=F \theta^{2}$
$\mathrm{F} \gg(\mathrm{Mz})^{2}$
SM singlet

A wide class of models of supersymmetry breaking

SUSY breaking

Hidden
sector

M
Q chiral superfield

$$
\int d^{4} \theta \frac{Z^{\dagger} Z Q^{\dagger} Q}{M^{2}}
$$

A wide class of models of supersymmetry breaking

SUSY breaking

Hidden
sector

MSSM

Observable sector
Z chiral superfield

$$
\langle Z\rangle=F \theta^{2}
$$

$$
F \gg(M z)^{2}
$$

SM singlet

Q chiral superfield

$$
\int d^{4} \theta \frac{Z^{\dagger} Z Q^{\dagger} Q}{M^{2}} \rightarrow m^{2} \tilde{Q}^{\dagger} \tilde{Q}, \quad m^{2}=\frac{F^{2}}{M^{2}}
$$

A wide class of models of supersymmetry breaking

A wide class of models of supersymmetry breaking

> gravity
mediation

Hidden sector

M
Q chiral superfield

Observable sector

Z chiral superfield

$$
\langle Z\rangle=F \theta^{2}
$$

$$
F \gg(M z)^{2}
$$

SM singlet

$$
\int d^{4} \theta \frac{Z^{\dagger} Z Q^{\dagger} Q}{M^{2}} \rightarrow m^{2} \tilde{Q}^{\dagger} \tilde{Q}, \quad m^{2}=\frac{F^{2}}{M^{2}}
$$

A wide class of models of supersymmetry breaking

A wide class of models of supersymmetry breaking
mediation
MSSM

Hidden
sector

Observable sector
Z chiral superfield

$$
\langle Z\rangle=F \theta^{2}
$$

$$
F \gg(M z)^{2}
$$

SM singlet
Q chiral superfield

$$
\int d^{4} \theta \frac{Z^{\dagger} Z Q^{\dagger} Q}{M^{2}} \rightarrow m^{2} \tilde{Q}^{\dagger} \tilde{Q}, \quad m^{2}=\frac{F^{2}}{M^{2}}
$$

A wide class of models of supersymmetry breaking

Tree level gauge mediation

$$
\int d^{4} \theta \frac{Z^{\dagger} Z Q^{\dagger} Q}{M^{2}}
$$

Tree level gauge mediation

z^{+}
Q^{+}
$\int d^{4} \theta \frac{Z^{\dagger} Z Q^{\dagger} Q}{M^{2}}$
z
Q

Tree level gauge mediation

$$
\int d^{t} \theta^{Z^{t} Z Q^{i} Q}
$$

Tree level gauge mediation

$$
\int d^{4} \theta \frac{Z^{\dagger} Z Q^{\dagger} Q}{M^{2}}
$$

???

???

- Supersymmetry breaking masses $\left(Z^{*} Z Q^{*} Q\right)$ are obtained at the tree level from spontaneous SUSY breaking in a renormalizable theory
- Two arguments seem to prevent this possibility

1. the supertrace formula
2. small gaugino masses

???

- Supersymmetry breaking masses $\left(Z^{*} Z Q^{*} Q\right)$ are obtained at the tree level from spontaneous SUSY breaking in a renormalizable theory
- Two arguments seem to prevent this possibility

1. the supertrace formula

$$
0=\left(S \operatorname{tr} M^{2}\right)_{f, \text { tot }}=\left(S \operatorname{tr} M^{2}\right)_{f, M S S M}+\left(S t r M^{2}\right)_{f, e x t r a}
$$

2. small gaugino masses

???

- Supersymmetry breaking masses $\left(Z^{*} Z Q^{*} Q\right)$ are obtained at the tree level from spontaneous SUSY breaking in a renormalizable theory
- Two arguments seem to prevent this possibility

1. the supertrace formula

$$
\begin{aligned}
0=\left(S \operatorname{tr} M^{2}\right)_{f, \text { tot }}= & \left(S \operatorname{tr} M^{2}\right)_{f, M S S M}+\left(S \operatorname{tr} M^{2}\right)_{f, \text { extra }} \\
& >0
\end{aligned}
$$

2. small gaugino masses

???

- Supersymmetry breaking masses $\left(Z^{*} Z Q^{*} Q\right)$ are obtained at the tree level from spontaneous SUSY breaking in a renormalizable theory
- Two arguments seem to prevent this possibility

1. the supertrace formula

$$
\begin{aligned}
0=\left(S \operatorname{tr} M^{2}\right)_{f, \text { tot }}= & \left(S \operatorname{tr} M^{2}\right)_{f, M S S M}+\left(S \operatorname{tr} M^{2}\right)_{\text {fextra }} \\
>0 & <0
\end{aligned}
$$

2. small gaugino masses

???

- Supersymmetry breaking masses $\left(Z^{*} Z Q^{*} Q\right)$ are obtained at the tree level from spontaneous SUSY breaking in a renormalizable theory
- Two arguments seem to prevent this possibility

1. the supertrace formula

$$
\begin{aligned}
0=\left(S \operatorname{tr} M^{2}\right)_{f, \text { tot }}=\left(S t r M^{2}\right)_{f, M S S M}+\left(S t r M^{2}\right)_{\text {fextra }} \\
>0 \quad<0 \\
\left(\tilde{m}_{\text {lightest "squark" }}^{2} \leq m_{d}^{2} \text { or } m_{u}^{2} \quad \text { if no additional U(1)'s }\right)
\end{aligned}
$$

2. small gaugino masses

???

- Supersymmetry breaking masses $\left(Z^{*} Z Q^{*} Q\right)$ are obtained at the tree level from spontaneous SUSY breaking in a renormalizable theory
- Two arguments seem to prevent this possibility

1. the supertrace formula

$$
\begin{aligned}
& 0=\left(S \operatorname{tr} M^{2}\right)_{f, \text { tot }}=\left(S t r M^{2}\right)_{f, M S S M}+\left(S t r M^{2}\right)_{\text {fextra }} \\
&>0 \quad<0 \\
&\left(\tilde{m}_{\text {lightest "squark" }}^{2} \leq m_{d}^{2} \text { or } m_{u}^{2} \quad \text { if no additional U(1)'s }\right)
\end{aligned}
$$

2. small gaugino masses

???

- Supersymmetry breaking masses $\left(Z^{*} Z Q^{*} Q\right)$ are obtained at the tree level from spontaneous SUSY breaking in a renormalizable theory
- Two arguments seem to prevent this possibility

1. the supertrace formula

$$
\begin{aligned}
& 0=\left(S \operatorname{tr} M^{2}\right)_{f, \text { tot }}=\left(S t r M^{2}\right)_{f, M S S M}+\left(S t r M^{2}\right)_{\text {fextra }} \\
&>0 \quad<0 \\
&\left(\tilde{m}_{\text {lightest "squark" }}^{2} \leq m_{d}^{2} \text { or } m_{u}^{2} \quad \text { if no additional U(1)'s }\right)
\end{aligned}
$$

2. small gaugino masses

$$
\tilde{m}_{f} \sim 100 M_{2} \gtrsim 10 \mathrm{TeV} \quad \square \tilde{m}_{f} \sim 10 M_{2} \cdot \eta \gtrsim 1 \mathrm{TeV} \cdot \eta
$$

Features

Features

- Simple (st)

Features

- Simple (st)
- Sfermion masses are flavour universal, thus solving the supersymmetric flavour problem

Features

- Simple (st)
- Sfermion masses are flavour universal, thus solving the supersymmetric flavour problem
- Sfermion masses determined in terms of a single parameter (as in the CMSSM, but for a reason)

Features

- Simple (st)
- Sfermion masses are flavour universal, thus solving the supersymmetric flavour problem
- Sfermion masses determined in terms of a single parameter (as in the CMSSM, but for a reason)
- Peculiar, testable prediction of minimal models:

$$
\tilde{m}_{q, u^{c}, e^{c}}^{2}=\frac{1}{2} \tilde{m}_{l, d^{c}}^{2}
$$

A concrete example

- $G=S O(10)$ "minimal" GUT (V heavy $S M$ singlet means rank ≥ 5)
- V associated to the SU(5)-invariant generator " X "
-

SO(10)		SU(5)		
$16=$	$\overline{5}$	+	10	
X	-3		1	5

$S O(10)$	$\operatorname{SU}(5)$
$10=$	$5+5$
X	2

-

- The (usual) embedding of a MSSM family in a single 16 does not work (whatever the sign of X_{z})

- The three MSSM families are embedded in $16_{i}+10_{i}, i=1,2,3$ (needs $x_{z}>0$)

$$
\begin{aligned}
& \text { So(10) } \\
& \text { SU(5) } \\
& \begin{array}{c}
16_{i} \\
x
\end{array}=\frac{\overline{5}_{i}}{-3}+\frac{10_{i}}{1}+\begin{array}{c}
1_{i} \\
5
\end{array}
\end{aligned}
$$

SO(10)
 SU(5)

$10_{i}=5 \overline{5}_{i}+5$
X 2 -2

- The three MSSM families are embedded in $16_{i}+10_{i}, i=1,2,3$ (needs $x_{z}>0$)

$$
\begin{aligned}
& \text { So(10) } \\
& \text { SU(5) } \\
& \begin{array}{c}
16_{i} \\
x
\end{array}=\frac{\overline{5}_{i}}{-3}+\frac{10_{i}+1_{i}}{1} \quad \begin{array}{c}
10_{i} \\
x
\end{array}=\frac{\overline{5}_{i}}{2}+\frac{5_{i}}{-2} \\
& \mathrm{SO}(10) \quad \mathrm{su}(5)
\end{aligned}
$$

- The three MSSM families are embedded in $16_{i}+10_{i}, i=1,2,3$ (needs $X_{z}>0$)

- Does not require any effort! (SO(10) reps with d < 120)

SO(10) breaking needs $16+\overline{16}$ with $\langle 16\rangle=\langle\overline{16}\rangle=(M) \approx M_{\text {Gut }}$ $h_{i j} 16_{i} 10_{j} 16 \rightarrow M_{i j} 5_{i} 5_{j} \quad$ when $16 \rightarrow\langle 16\rangle$
(Reinforces the theoretical consistency)

- The three MSSM families are embedded in $16_{i}+10_{i}, i=1,2,3$ (needs $x_{z}>0$)

- Does not require any effort! (SO(10) reps with d < 120)

SO(10) breaking needs $16+\overline{16}$ with $\langle 16\rangle=\langle\overline{16}\rangle=(M) \approx M_{\text {Gut }}$ $h_{i j} 16_{i} 10_{j} 16 \rightarrow M_{i j} 5_{i} 5_{j} \quad$ when $16 \rightarrow\langle 16\rangle$
(Reinforces the theoretical consistency)

- SUSY breaking: Z must be the singlet of a $16^{\prime} \quad$ (gauge invariance: $16^{\prime} \neq 16$)
- The three MSSM families are embedded in $16_{i}+10_{i}, i=1,2,3$ (needs $x_{z}>0$)

- Does not require any effort! (SO(10) reps with d < 120)

SO(10) breaking needs $16+\overline{16}$ with $\langle 16\rangle=\langle\overline{16}\rangle=(M) \approx M_{\text {Gut }}$ $h_{i j} 16_{i} 10_{j} 16 \rightarrow M_{i j} 5_{i} 5_{j} \quad$ when $16 \rightarrow\langle 16\rangle$
(Reinforces the theoretical consistency)

- SUSY breaking: Z must be the singlet of a 16^{\prime} (gauge invariance: $16^{\prime} \neq 16$)

$$
\tilde{m}_{Q}^{2}=\frac{X_{Q}}{2 X_{Z}} \frac{F^{2}}{M^{2}}
$$

- Then $\tilde{m}_{q}^{2}=\tilde{m}_{u^{c}}^{2}=\tilde{m}_{e^{c}}^{2}=\tilde{m}_{10}^{2}=\frac{1}{10} m^{2}, \quad \tilde{m}_{l}^{2}=\tilde{m}_{d^{c}}^{2}=\tilde{m}_{5}^{2}=\frac{1}{5} m^{2}, \quad m=\frac{F}{M}$
- In particular
- all sfermion masses are positive
- sfermion masses are flavour universal, thus solving the supersymmetric flavour problem, and determined by a single parameter
- $\tilde{m}_{q, u^{c}, e^{c}}^{2}=\frac{1}{2} \tilde{m}_{l, d^{c}}^{2} \quad(a+M)$
- Then $\quad \tilde{m}_{q}^{2}=\tilde{m}_{u^{c}}^{2}=\tilde{m}_{e^{c}}^{2}=\tilde{m}_{10}^{2}=\frac{1}{10} m^{2}, \quad \tilde{m}_{l}^{2}=\tilde{m}_{d^{c}}^{2}=\tilde{m}_{\overline{5}}^{2}=\frac{1}{5} m^{2}, \quad m=\frac{F}{M}$
- In particular
- all sfermion masses are positive
- sfermion masses are flavour universal, thus solving the supersymmetric flavour problem, and determined by a single parameter
- $\tilde{m}_{q, u^{c}, e^{c}}^{2}=\frac{1}{2} \tilde{m}_{l, d^{c}}^{2} \quad(a+M)$

How general are the predictions?

- They assume:
- Minimal GUT implementation (SO(10))
- Only SO(10) reps with $\mathrm{d}<120$
- Pure embeddings of SM multiplets in 1 type of SO(10) reps (guarantees the solution of the SUSY flavour problem), or no matter mass terms
- Non minimal GUTs?
- A natural option is E_{6}
- $27_{i}=16_{i}+10_{i}+1_{i}$ under $\mathrm{SO}(10)$

Gaugino masses

SO(10)	SU(5)	SO(10)	SU(5)
$16_{i}=$	5_{i}		
\times	-3	$10_{i}+1_{i}$	$10_{i}=$

Gaugino masses

- Arise at one-loop because of a built-in ordinary gauge mediation structure

Gaugino masses

- Arise at one-loop because of a built-in ordinary gauge mediation structure

Gaugino masses

- Arise at one-loop because of a built-in ordinary gauge mediation structure

Gaugino masses

- Arise at one-loop because of a built-in ordinary gauge mediation structure
- $\left(W=h_{i j} 16_{i} 10_{j} 16+h_{i j}^{\prime} 16_{i} 10_{j} 16^{\prime}\right)$

- $O(100)$ hierarchy $\rightarrow O(10): \tilde{m}_{+}>O(1 \mathrm{TeV}) \times$ model dep factor λ

Miscellaneous

- A new $D=3$ solution of the μ problem $\mathrm{D}=4$ (NMSSM) and $\mathrm{D}=5$ (Giudice-Masiero) can also work
- Sugra contamination smaller than in loop gauge mediation (Maut OK)
- LSP is the gravitino
- Higgs soft terms bounded in predicted interval
- Up and down Yukawas decoupled despite SO(10)
- Neutrino masses through type-I, type-II, or hard susy breaking operators
- Type-II leptogenesis possible

Conclusions

- Simple (st)
- Sfermion masses are flavour universal, thus solving the supersymmetric flavour problem
- Sfermion masses determined in terms of a single parameter (as in the CMSSM, but for a reason)
- Peculiar, testable prediction of minimal models:

$$
\tilde{m}_{q, u^{c}, e^{c}}^{2}=\frac{1}{2} \tilde{m}_{l, d^{c}}^{2}
$$

Spare

- Higgs doublets: only possible embeddings are into $16,10\left(h_{d}\right), \overline{16}, 10\left(h_{u}\right)$
- Let $\cos ^{2} \theta_{u, d}$ be the size of the components of $h_{u, d}$ in 10 's
- Then $\quad m_{h_{u}}^{2}=\frac{-2 c_{u}^{2}+3 s_{u}^{2}}{5} m^{2} \quad m_{h_{d}}^{2}=\frac{2 c_{d}^{2}-3 s_{d}^{2}}{5} m^{2}$

$$
-\frac{2}{5} m^{2}<m_{h_{u}}^{2}<\frac{3}{5} m^{2} \quad-\frac{3}{5} m^{2}<m_{h_{d}}^{2}<\frac{2}{5} m^{2}
$$

SM Yukawas

- Down quark and charged lepton Yukawas:
- $10_{\mathrm{i}} \overline{5}_{\mathrm{j}} \overline{5}_{H}$ (in $\mathrm{SU}(5)$ language) $\rightarrow h_{\mathrm{ij}} 16_{\mathrm{i}} 10_{\mathrm{j}} 16_{H}$ (where possibly $16_{H}=16$)
- Up quarks:
- $10_{i} 10_{j} 5_{H}($ in $\mathrm{SU}(5)$ language $) \rightarrow y_{i j} 16_{i} 16_{j} 10_{H}$
- Note: down and up quarks described by two independent Yukawa matrices (room to explain their different structure despite the SO(10) constraints)

Sugra contributions to sfermion masses

- Add to the tree level gauge mediated contribution and may induce FCNCs
- Their size is less important than in loop gauge mediation (because no loop suppression here). As a consequence, a messenger scale as large as Maut does not represent a potential problem for FCNCs
- Assuming the gravity contribution to a generic entry of the sfermion mass matrix is $\left(\mathrm{m}^{2}\right)_{\text {sugra }}=\left(\mathrm{F} / \mathrm{Mpl}^{2}\left(\mathrm{Mpl}^{2}=2.410^{18} \mathrm{GeV}\right)\right.$ we obtain
- $\left(\mathrm{m}^{2}\right)_{\text {sugra }}<210^{-3}\left(\mathrm{~m}^{2}\right)_{\text {stop }}$ iff $\mathrm{M}<310^{16} \mathrm{GeV}$ (guarantees FCNC effects from flavour-anarchical sugra contribution are under control)

A new solution to the μ-problem

- μ is a supersymmetric mass parameter that accounts for Higgsino masses
- Its phenomenological window $O(100 \mathrm{GeV})<\mu<\mathrm{O}(1 \mathrm{TeV})$ turns out to coincide with the window of supersymmetry breaking sfermion masses \tilde{m} : is it an accident or is there a connection between μ and \tilde{m} ?
- In the absence of a connection, there would be no reason why μ should not be of the order of a much larger, susy-conserving mass scale, such as Meut or Mpl. Or, if μ is suppressed by a symmetry, there would be no reason why it should not be much smaller or vanish
- Well known, appealing solutions of the μ-problem can be implemented - D=5: Giudice-Masiero $\int d^{4} \theta a \frac{Z^{\dagger}}{M} h_{u} h_{d} \rightarrow \mu=a \frac{F}{M}$ can arise at looplevel; $\mu \approx M_{g} \approx 100 \mathrm{GeV}, \mathrm{B} \mu \approx \mathrm{m} \approx \mathrm{TeV}$ (because of $\mu / \mathrm{B} \mu$ connection)
- $D=4: \operatorname{NMSSM} \int d^{2} \theta \lambda S h_{u} h_{d} \rightarrow \mu=\lambda\langle S\rangle \sim \lambda \tilde{m} \quad S$ can have negative soft mass (unlike in ordinary gauge mediation) but should take care of quartic coupling
- D=3: an intrinsic TGM solution
- The $D=3$ solution of the μ-problem in TGM: μ and \tilde{m} arise from the same mass term in the superpotential
- Reminder: we need
- $16=\overline{5}+10+1 \quad \overline{16}=5+\overline{10}+\overline{1} \quad\langle 1\rangle=\langle\overline{1}\rangle=M \approx M_{\text {GUT }}$
- $16^{\prime}=\overline{5}^{\prime}+10^{\prime}+\mathrm{Z} \quad \overline{16^{\prime}}=5^{\prime}+\overline{10^{\prime}}+\overline{\mathrm{Z}} \quad\langle\mathrm{Z}\rangle=\mathrm{F} \theta^{2}$
- The easiest way to get a susy-breaking $\left\langle 16^{\prime}\right\rangle$ is through

$$
\begin{aligned}
& W=m 16^{\prime} \overline{16}\left[+Y\left(161 \overline{6}-M^{2}\right)+X 1 \overline{6}^{\prime} 16\right] \\
& \text { then } F=m M \text { (so that } m=F / M)
\end{aligned}
$$

- Because of $\mathrm{SO}(10), \mathrm{m}$ is also the mass term of the doublet components of $16^{\prime} \overline{16}$, which can contain a Higgs component: $16^{\prime}=\alpha^{\prime} h_{d}+\ldots, \overline{16}=\alpha h_{u}+\ldots$ so that $\mu=\alpha \alpha^{\prime} m=\alpha \alpha^{\prime}(F / M)$

Cosmology

- LSP is the gravitino (in the regime in which sugra FCNC effects are under control), as in loop gauge mediation

$$
m_{3 / 2}=\frac{F}{\sqrt{3} M_{\mathrm{P}}} \approx 15 \mathrm{GeV}\left(\frac{\tilde{m}_{10}}{\mathrm{TeV}} \frac{M}{2 \cdot 10^{16} \mathrm{GeV}}\right)
$$

- Stable gravitino: a dilution mechanism is necessary not to overclose the universe, $\mathrm{T}_{\mathrm{R}}<210^{9} \mathrm{GeV}$
- NLSP decay can spoil BBN
- If the NLSP is a neutralino (typical case) a decay channel much faster than the Goldstino one is needed in order not to spoil BBN (e.g. a tiny amount of Rp-violation; consistent with thermal leptogenesis and gravitino DM)
[Buchmuller, Covi, Hamaguchi, Ibarra, Yanagida,
arXiv:hep-ph/0702184 (JHEP)]
- If the NLSP is a stau (the other possibility) BBN not a problem but the peculiar predictions of TGM are hidden by large loop gauge mediation contributions
- (work in progress)

An example of spectrum

Higgs:	$m_{h^{0}}$	114
	$m_{H^{0}}$	1543
	m_{A}	1543
	$m_{H^{ \pm}}$	1545
Gluinos:	$M_{\tilde{g}}$	448
Neutralinos:	$m_{\chi_{1}^{0}}$	62
	$m_{\chi_{2}^{0}}$	124
	$m_{\chi_{3}^{0}}$	1414
	$m_{\chi_{4}^{0}}$	1415
Charginos:	$m_{\chi_{1}^{ \pm}}$	124
	$m_{\chi_{2}^{ \pm}}$	1416
Squarks:	$m_{\tilde{u}_{L}}$	1092
	$m_{\tilde{u}_{R}}$	1027
	$m_{\tilde{d}_{L}}$	1095
	$m_{\tilde{d}_{R}}$	1494
	$m_{\tilde{t}_{1}}$	1007
	$m_{\tilde{t}_{2}}$	1038
	$m_{\tilde{b}_{1}}$	1069
	$m_{\tilde{b}_{2}}$	1435
Sleptons:	$m_{\tilde{e}_{L}}$	1420
	$m_{\tilde{e}_{R}}$	1091
	$m_{\tilde{\tau}_{1}}$	992
	$m_{\tilde{\tau}_{2}}$	1387
	$m_{\tilde{\nu_{e}}}$	1418
	$m_{\tilde{\nu_{\tau}}}$	1382

Figure 2: An example of spectrum, corresponding to $m=3.2 \mathrm{TeV}, M_{1 / 2}=150 \mathrm{GeV}, \theta_{d}=\pi / 6$, $\tan \beta=30$ and $\operatorname{sign}(\mu)=+, A=0, \eta=1$. All the masses are in GeV , the first two families have an approximately equal mass.

