Cosmological Aspects of Long-Lived Charged Massive Particles

June 2, 2010 @ Planck 2010, CERN

Tomo Takahashi Department of Physics, Saga University

Collaborator: Kazunori Kohri (KEK)

Long-Lived Charged Massive Particles (CHAMP)

- Long-lived charged massive particles (CHAMP) can exist in some extension of the standard model.
- From experiments of deep sea water, such massive charged particles are severely constrained if they are stable.
- However, CHAMPs can be unstable, then they can constitute a dominant component (or some fraction) of non-relativistic matter in the early Universe.
- CHAMP would affect various cosmological aspects.

Cosmological effects of CHAMP

- BBN (Catalyzed BBN)
- BBN (particle decay)
- CMB spectrum (particle decay)
 - •
 - •
 - •
 - •
- Large scale structure

Evolution of the bound state

[Kohri & TT, PLB, 0909.4601]

• CHAMPs can form the bound-state with light nuclei (p,He4)

$$\frac{dn_{(^{4}\text{HeX}^{-})}}{dt} = -3Hn_{(^{4}\text{HeX}^{-})} - \Gamma_{X}n_{(^{4}\text{HeX}^{-})} \\
+ \langle \sigma_{\text{bnd},^{4}\text{He}}v \rangle \left[(n_{^{4}\text{He}} - n_{(^{4}\text{HeX}^{-})})n_{X^{-}} - \left(\frac{m_{^{4}\text{He}}m_{X}T}{2\pi m_{(^{4}\text{HeX}^{-})}}\right)^{3/2} e^{-E_{b}^{4}\text{He}/T}n_{(^{4}\text{HeX}^{-})} \right] \\
+ \langle \sigma_{\text{ex}}v \rangle (n_{^{4}\text{He}} - n_{(^{4}\text{HeX}^{-})})n_{(pX^{-})} \\
+ \langle \sigma_{\text{ex}}v \rangle (n_{^{4}\text{He}} - n_{(^{4}\text{HeX}^{-})})n_{(pX^{-})} \\
+ \langle \sigma_{\text{bnd},p}v \rangle \left[(n_{p} - n_{(pX^{-})})n_{X^{-}} - \left(\frac{m_{p}m_{X}T}{2\pi m_{(pX^{-})}}\right)^{3/2} e^{-E_{bp}/T}n_{(pX^{-})} \right] \\
- \langle \sigma_{\text{ex}}v \rangle (n_{^{4}\text{He}} - n_{(^{4}\text{HeX}^{-})})n_{(pX^{-})} \\
- \langle \sigma_{\text{ex}}v \rangle (n_{^{4}\text{He}} - n_{(^{4}\text{HeX}^{-})})n_{(pX^{-})} \\
- \langle pX^{-} \rangle + 4 \text{ He} \rightarrow (^{4}\text{HeX}^{-}) + p \\
- \langle pX^{-} \rangle \\
- \langle pX^{-} \rangle + 4 \text{ He} \rightarrow (^{4}\text{HeX}^{-}) + p \\
- \langle pX^{-} \rangle + 2 \text{ Charge exchange reaction}$$

Evolution of the bound state

[Kohri & TT, PLB, 0909.4601]

• Most Negative CHAMPs are captured by He4 to form $({}^{4}\text{He}X^{-})$

Effects of CHAMP on large scale structure

Charged particles are tightly coupled to bayron-photon fluid.

Inside the horizon, CHAMPs participate in the acoustic oscillation, which suppresses the growth of fluctuations of champ.

Effects of CHAMP on large scale structure

[Sigurdson, Kamionkowski 2004]

Evolution of density fluctuations

(For the scale which enters the horizon before the decay)

• Density fluctuations for the scale which has already in the horizon before the decay cannot grow (participate in acoustic ocs.)

"Damping" of matter power spectrum on small scales

"Damping" of Matter Power Spectrum

[Sigurdson, Kamionkowski 2004]

• Power on smaller scales is suppressed due to "acoustic damping"

Acoustic Damping Scale

• Fluctuations of the scale which enters the horizon before the decay

Acoustic oscillation

- Fluctuations of the scale which enters the horizon after the decay
 - Same as the neutral DM case (no damping)

 $k_X \equiv aH|_{t=\tau_X} \longrightarrow k_X \simeq 10^4 \sqrt{\frac{\sec}{\tau_v}} \text{ Mpc}^{-1}.$

Constraint on CHAMP

(Density of CHAMPs is fixed to give the present DM density if they are stable in this figure.)

Damping scales of matter power spectrum

Constraint on CHAMP

• Smaller scale structure is observed, a severer constraint on the lifetime would be obtained.

Mixed scenario (neutral DM + CHAMP)

• In some models, neutral DM and CHAMPs coexist.

• Smaller fraction of CHAMP suppresses the matter power less.

Mixed scenario (neutral DM + CHAMP)

[Kohri & TT, in prep.]

- In some models, neutral DM and CHAMPs coexist.
- Parametrize the fraction of champ as: $f_{\rm ch} = \frac{n_{\rm ch}}{n_{\chi}}$ $\left(\frac{\Delta m}{m} \ll 1\right)$

Constraint on the fraction and the life time of CHAMP

Summary

- (Most) negative CHAMPs are captured by He4.
- CHAMPs significantly affect density fluctuations.
- If CHAMPs are (very) long-lived, the structure of the Universe is "suppressed" on smaller scales.
- If further smaller scale structure is observed, a severer constraint on CHAMP lifetime is obtained.
- Mixed scenario (neutral DM+CHAMPs) can also be constrained by cosmological data.