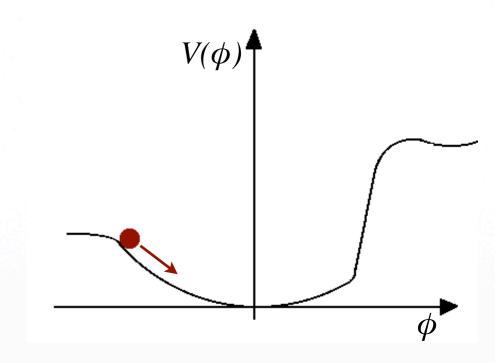
A natural framework for chaotic inflation

Lorenzo Sorbo

with A. Lawrence and N. Kaloper, in preparation see also Kaloper and LS 2008



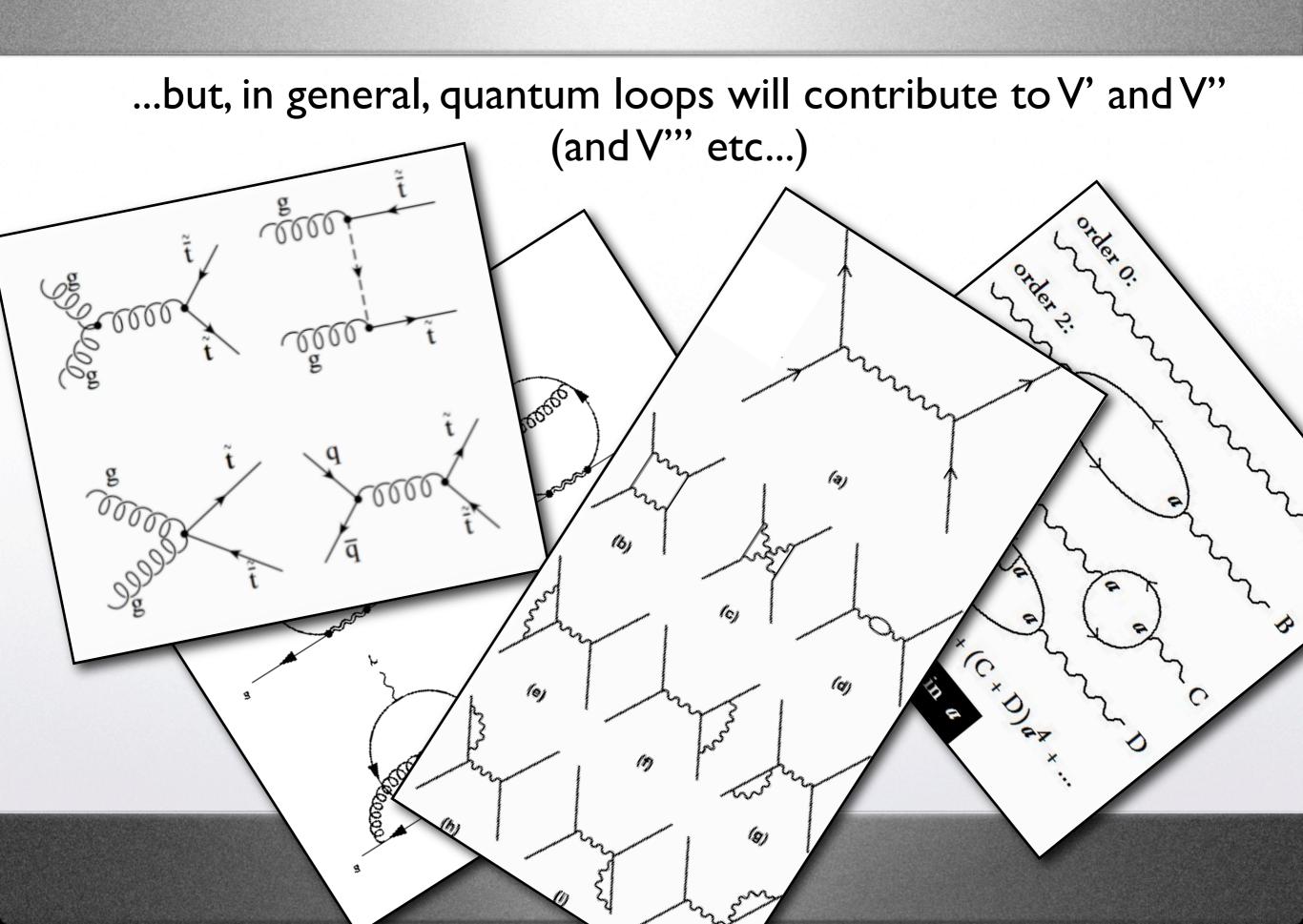
✓ very early Universe filled by scalar field ϕ , potential $V(\phi)>0$

 \checkmark to induce acceleration, $V(\phi)$ must be flat

 $V'(\phi) \ll V(\phi)/M_P$

✓ to have long enough inflation, $V(\phi)$ must stay flat for long enough $V''(\phi)$

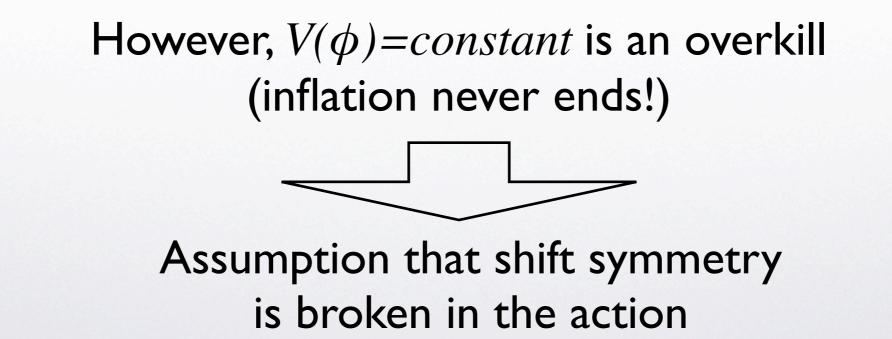
 $W''(\phi) \ll V(\phi)/M_P^2$



Things can be not so bad...

If the system is invariant under $\phi \rightarrow \phi + c$ (shift symmetry) then $V(\phi) = constant$

and perturbative effects do not spoil the flatness of $V(\phi)$



Of course this does not mean that there is no problem...

E.g., couplings to matter (needed to reheat) or nonperturbative effects can break the (global) shift symmetry too much

In this talk:

Can we generate a mass for the inflaton without breaking a shift symmetry of the action?

Our approach: use 4-forms

$$S_{4 \text{ form}} = -\frac{1}{48} \int F^{\mu\nu\rho\lambda} F_{\mu\nu\rho\lambda}$$

 $|F_{\mu\nu\rho\lambda}=\partial_{[\mu}A_{\nu\rho\lambda]}|$

tensor structure in $4d \Rightarrow F_{\mu\nu\varrho\lambda} = q(x^{\alpha}) \varepsilon_{\mu\nu\varrho\lambda}$

equations of motion $D^{\mu}F_{\mu\nu\varrho\lambda} = 0 \Rightarrow q(x^{\alpha}) = \text{constant}$

Sources for the 4-form: membranes

$$\begin{split} \mathcal{S}_{brane} \ni \frac{e}{6} \int d^{3}\xi \sqrt{\gamma} e^{abc} \partial_{a} x^{\mu} \partial_{b} x^{\nu} \partial_{c} x^{\lambda} A_{\mu\nu\lambda} \\ & [x^{a}(\xi^{a}) = \text{membrane worldvolume}] \\ & [e] = \text{mass}^{2} \end{split}$$

 $q(x^{\alpha})$ jumps by *e* across a membrane

 $F_{\mu\nu\varrho\lambda}(x^{\alpha})$ is locally constant and jumps in units of e

Let us couple the 4-form to a pseudoscalar

$$S = \int d^4x \left[-\frac{1}{2} \left(\nabla \phi \right)^2 - \frac{1}{48} F_{\mu\nu\rho\lambda}^2 + \frac{\mu}{24} \phi \epsilon_{\mu\nu\rho\lambda} F^{\mu\nu\rho\lambda} \right]$$

Di Vecchia and Veneziano 1980 Quevedo and Trugenberger 1996 Dvali and Vilenkin 2001 Kaloper and LS 2008

Action invariant under shift symmetry:

under $\phi \rightarrow \phi + c$, $\mathcal{L} \rightarrow \mathcal{L} + c \,\mu \,\varepsilon^{\mu\nu\varrho\lambda} F_{\mu\nu\varrho\lambda}/24$

Let us couple the 4-form to a pseudoscalar

$$S = \int d^4x \left[-\frac{1}{2} \left(\nabla \phi \right)^2 - \frac{1}{48} F_{\mu\nu\rho\lambda}^2 + \frac{\mu}{24} \phi \epsilon_{\mu\nu\rho\lambda} F^{\mu\nu\rho\lambda} \right]$$

Di Vecchia and Veneziano 1980 Quevedo and Trugenberger 1996 Dvali and Vilenkin 2001 Kaloper and LS 2008

Action invariant under shift symmetry:

under
$$\phi \rightarrow \phi + c$$
, $\mathcal{L} \rightarrow \mathcal{L} + c \mu \epsilon^{\mu\nu\varrho\lambda} F_{\mu\nu\varrho\lambda}/24$
total derivative! (F=dA)

Equations of motion (away from branes)

Variation of the action

After simple manipulations

$$\begin{cases} \nabla^{\mu} (F_{\mu\nu\varrho\lambda} - \mu \ \varepsilon_{\mu\nu\varrho\lambda} \ \phi) = 0 \\ \nabla^{2} \phi + \mu \ \varepsilon^{\mu\nu\varrho\lambda} F_{\mu\nu\varrho\lambda} / 24 = 0 \end{cases}$$

$$\begin{cases} F_{\mu\nu\varrho\lambda} = \varepsilon_{\mu\nu\varrho\lambda} (q + \mu \ \phi) \\ \nabla^{2} \phi - \mu^{2} (\phi + q/\mu) = 0 \end{cases}$$

q = integration constant

Equations of motion (away from branes)

Variation of the action

After simple manipulations

 $\begin{cases} \nabla^{\mu} (F_{\mu\nu\varrho\lambda} - \mu \varepsilon_{\mu\nu\varrho\lambda} \phi) = 0 \\ \nabla^{2} \phi + \mu \varepsilon^{\mu\nu\varrho\lambda} F_{\mu\nu\varrho\lambda}/24 = 0 \end{cases}$ $F_{\mu\nu\varrho\lambda} = \varepsilon_{\mu\nu\varrho\lambda} (q + \mu \phi)$ $\nabla^2 \phi - \mu^2 (\phi + q/\mu) = 0$

q = integration constant

- The theory describes a massive pseudoscalar while retaining the shift symmetry!
- The symmetry is broken spontaneously when a solution is picked
- q changes by e across branes \Rightarrow q is quantized

Embedding in stringy lagrangian

To fix ideas, let us focus on 11d SUGRA, that contains a 4-form F=dA

$$S_{11D\ forms} = M_{11}^9 \int *F \wedge F + M_{11}^9 \int A \wedge F \wedge F$$

and consider a simple compactification on $M_4 \times T^3 \times T^4$
truncating as $A_{-1}(r^q) \cdot A_{-1}(r^q) = \Phi \cdot A_{-1}(r^q) \cdot A_{-1}(r^q)$

truncating as $A_{\mu\nu\varrho}(x^{\alpha}) \sim A_{\mu\nu\varrho}(x^{\alpha})$, $\phi \sim A_{456}(x^{\mu})$, $A_{789}(y^i)$

effective 4d actior

 $\mu \sim F_{78910}$

tive
$$= \sum S_{4D} = \int \left(-\frac{1}{48} F_{\mu\nu\rho\lambda}^2 - \frac{1}{2} \left(\nabla \phi \right)^2 + \frac{\mu}{24} \phi \epsilon_{\mu\nu\rho\lambda} F^{\mu\nu\rho\lambda} \right)$$

The mass is quantized!

ϕ as an angle

Effective potential $V(\phi) \sim (q + \mu \phi)^2$ with q, μ quantized: discrete invariance $q \rightarrow q + n e, \ \phi \rightarrow \phi - n e/\mu = \phi - n f$ Beasley and Witten 2002

at the level of action ϕ is still an angle!

Once a vev for q is chosen, the angle unwraps:

MONODROMY

Silverstein and Westphal 2008

Corrections to our lagrangian

- If we limit ourselves to $F_{\alpha\beta\gamma\delta}$ and ϕ , first correction that respects shift symmetry and gauge invariance is F^3/M^2 for some cutoff scale $M \Leftrightarrow Since F \sim \mu \phi \sim \sqrt{\rho}$, the expansion parameter is actually (energy/cutoff) \checkmark
- Other moduli ψ coupled to F via terms such as $f(\psi/M_P) F^2$ in the lagrangian \star Depends on specific string compactification
- Instanton corrections generate terms $\sim A \cos(\phi/f)$, ok for small Λ (see later) \checkmark

Signatures

In the basic version, predictions identical to chaotic inflation (including gravitational waves!)

Potential CMB exotics from phase transitions during inflation:

Emission of branes can change q (and give a kick to ϕ) or μ during inflation $$^{\rm in\,progress}$$

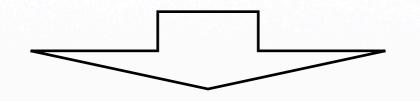
Bumps induced by instantons can give small corrections to $V(\phi)$

$$V(\phi) = \frac{\mu^2}{2} (\phi + q/\mu)^2 + \Lambda^4 \cos(\phi/f)$$

can generate observable nongaussianities in CMB Chen et al, 2008

Signatures

Coupling $(\phi / f) \epsilon^{\alpha\beta\mu\nu} F_{\alpha\beta} F_{\mu\nu}$ consistent with shift symmetry (and needed to reheat)



Rolling ϕ amplifies vacuum fluctuations of $F_{\mu\nu}$, producing helical E&M fields

Anber, LS, 2006

Lower bound on ffrom requirement that $F_{\mu\nu}$ stays small Parity violating fluctuations \Rightarrow CMB?

Conclusions

- Naturalness of inflaton potentials is a nontrivial issue but it is NOT impossible!
- Shift symmetries play a central role in the construction of models of inflation
- String theory contains many 4-forms fields
- We can use 4-forms to obtain radiatively stable, massive pseudoscalars with a discretuum of masses and vevs
- Potential peculiar signatures
- Full stringy construction?