Phenomenological Implications of Deflected Mirage Mediation (DMM)

Lisa Everett University of Wisconsin, Madison

Based on: L.E., I.-W. Kim, P. Ouyang, K. Zurek '08 B. Altunkaynak, L.E., I.-W. Kim, B. Nelson, Y. Rao, 1001.5261, 1006.xxxx

Introduction/Motivation

TeV scale softly broken supersymmetry (SUSY) has many benefits:

(i) Hierarchy problem
(ii) Gauge coupling unification
(iii) Higgs sector/radiative EW breaking
(iv) Dark matter candidate etc....

Most well-motivated+robust framework for physics beyond SM. Definitive tests of the TeV scale SUSY hypothesis at the LHC! Depends in detail on SUSY breaking sector.

The Soft SUSY Breaking Sector

Many parameters: 105 in the MSSM Fortunately, most are not likely to be important...

SUSY flavor/CP problems: <u>assume</u> (can be relaxed carefully) minimal flavor violation, no nonzero SUSY CP phases

 $105
ightarrow \sim 20$ relevant parameters

gaugino masses: $M_{1,2,3}$ trilinears (3rd gen): $A_{t,b,\tau}$

Ist, 2nd gen scalars: $m_{Q,u,d,L,e}^2$ 3rd gen: $m_{Q_3,u_3,d_3,L_3,e_3}^2$ also $\mu, b \equiv B\mu$ Option I. Study this set (or certain regions) explicitly.

Example: "Supersymmetry Without Prejudice"

C. Berger et al. 0812.0980

Option 2. Build models.

Many examples...

Prototype: mSUGRA/CMSSM 3 masses, 1 ratio, 1 sign

Beyond mSUGRA: seek minimal models

Bottom-up: solve problems of MSSM (ideally both!) Top-down: connections to underlying theory

This talk: a particular model framework (DMM)

Building SUSY Models

Hidden sector paradigm:

order parameter of SUSY breaking

standard mediation mechanisms: gravity, gauge, anomaly/"bulk"

Mediators side-by-side

Standard model-building approach:

solve problems of the MSSM (flavor/CP, mu/Bmu, etc.) typically only I mediation mechanism dominates

Alternative approach: purely top-down "mixed" scenarios: 2 or 3 mediation mechanisms comparable

Motivation:

recent progress in moduli stabilization in string theory

Examples: mirage mediation (MM), deflected mirage mediation (DMM)

Mirage Mediation (MM)

Motivated by KKLT scenario (Type IIB string theory)

Kachru, Kallosh, Linde, Trivedi '03

Why "mirage"?

Choi et al., '05,...

Apparent unification of soft terms at "mirage scale"

Deflected Mirage Mediation (DMM)

A mixed modulus-gravity/anomaly/gauge mediation model!

$W_X \sim X^n + X\Psi\Psi$

 F^X

 $\frac{F^X}{X} \sim -\frac{2}{n-1} \frac{F^C}{C}$

X, messengers (generic): can give comparable gauge-mediated terms

L.E., I.-W. Kim, P. Ouyang, K. Zurek, 0804.0592, 0806.2330

 $m_{\rm soft}^{\rm (grav)} \sim m_{\rm soft}^{\rm (anom)} \sim m_{\rm soft}^{\rm (gauge)}$

The Parameters of Deflected Mirage Mediation

2 mass scales, 3 ratios (discrete/cont?), I+ discrete, I sign Idea: can "dial" b/w scenarios with α_m, α_q

Why "deflected mirage"?

$$M_{\rm mess} = 10^{12} \,{\rm GeV}, \alpha_m = 1, \alpha_g = 1, N = 3, \tan\beta = 10, \mu > 0$$

Large thresholds scenario: Mass Spectrum

$$M_{\rm mess} = 10^{12} \,{\rm GeV}, \alpha_m = 1, \alpha_g = 1, N = 3, \tan\beta = 10, \mu > 0$$

compressed gaugino sector due to TeV mirage unification

Varying the messenger scale...

 $M_{\rm mess} = 10^5 \,{\rm GeV}, \alpha_m = 1, \alpha_g = 1, N = 3, \tan\beta = 10, \mu > 0$

wino LSP scenario...

Small threshold scenario... $\alpha_g < 0$

 $M_{\rm mess} = 10^{12} \,{\rm GeV}, \alpha_m = 1, \alpha_g = -0.5, N = 3, \tan\beta = 10, \mu > 0$

Small threshold scenario: Mass Spectrum

Depends in detail on (deflected) mirage scale!

DMM Collider Phenomenology

First study: effects of gauge mediation. Can be dramatic!

	Parameter Set				α_g Value				
	α_m	M_0	$M_{\rm mess}$	-1.0	-0.5	0	0.5	1.0	
Line A	1	$2 { m TeV}$	$10^{12} { m GeV}$	$\tilde{\tau}$ LSP	\checkmark	\checkmark	\checkmark	$\checkmark\checkmark$	
Line B	1	$1 { m TeV}$	$10^8 { m ~GeV}$	\checkmark	$\checkmark\checkmark$	\checkmark	\tilde{g} LSP	\tilde{g} LSP	
Line C	0.771	$0.8 { m TeV}$	$10^{12}~{ m GeV}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
Line D	0.755	$0.4 { m TeV}$	$10^{12}~{ m GeV}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
	Missing	E _⊤ Distrib	ution	mu	ltije	ts	· ·		
	2000 1600 1400 1200 1000 000 400 000			*****		a Set D1 D2 D3 D4 D5			
	0	100	200 300	400	500 6	500 70	0 800		

Model Point	$\sigma_{ m SUSY}~(m pb)$	Trigger Eff.						
Line A								
A2	1×10^{-3}	98.8%						
A3	$5 imes 10^{-3}$	99.1%						
A4	0.02	98.4%						
A5	0.21	73.8%						
Line B								
B1	0.38	98.4%						
B2	1.54	96.8%						
B3	5.56	88.0%						
Line C								
C1	0.25	98.9%						
C2	0.59	98.6%						
C3	1.45	98.0%						
C4	3.80	96.1%						
C5	11.71	90.2%						
Line D	Line D							
D1	12.7	95.9%						
D2	27.0	94.0%						
D3	61.1	91.0%						
D4	152.0	84.6%						
D5	459.7	67.2%						

B.Altunkaynak, L.E., I.-W. Kim, B. Nelson, Y. Rao, 1001.5261

DMM Collider Phenomenology

<u>Current study</u> (in progress):

Landscape of lightest 4 non-SM particle masses

comparison with: mSUGRA D. Feldman, Z. Liu, P. Nath '07, '08 "SUSY without Prejudice"

C. Berger, J. Gainer, J.Hewett, T. Rizzo '08

Scan of 24.75M DMM models: (variety of cuts)

 $1 \le N \le 5 \qquad \qquad 0 \le \alpha_m \le 2$ $10^4 \,\text{GeV} \le M_{\text{mess}} \le 10^{16} \,\text{GeV} \qquad -1 \le \alpha_g \le 2$ $50 \,\text{GeV} \le m_0 \le 2 \,\text{TeV} \qquad 1 \le \tan \beta \le 60$

B. Altunkaynak, L.E., I.-W. Kim, B. Nelson, Y. Rao, in preparation

Compare: mSUGRA patterns (FLN)

Feldman, Liu, Nath '07

DMM Results (preliminary)

	Pattern	% of Models			Pattern	% of Models			
	$H < A < H^{\pm} < \chi_1^0$	23.33%		\longleftrightarrow	$H < A < H^{\pm} < \chi_1^0$	27.04%			
mSP3	$\chi_1^0 < \chi_1^\pm < \chi_2^0 < \tilde{\tau}_1$	21.57%		mSP3	$\chi_1^0 < \chi_1^\pm < \chi_2^0 < \tilde{\tau}_1$	12.51%			
mSP4	$\chi_1^0 < \chi_1^{\pm} < \chi_2^0 < \tilde{g}$	12.25%		mSP3	$\chi_1^0 < \chi_2^0 < \chi_1^\pm < \tilde{\tau}_1$	8.51%			
mSP2	$\chi_1^0 < \chi_1^{\pm} < \chi_2^0 < H$	7.05%		mSP2	$\chi_1^0 < \chi_1^\pm < \chi_2^0 < H$	7.77%			
	$\chi_1^0 < \chi_1^{\pm} < \tilde{g} < \chi_2^0$	4.24%		mSP6	$\chi_1^0 < ilde{ au}_1 < \chi_2^0 < \chi_1^\pm$	6.96%			
mSP3	$\chi_1^0 < \chi_2^0 < \chi_1^\pm < \tilde{\tau}_1$	3.46%		mSP2	$\chi_1^0 < \chi_2^0 < \chi_1^\pm < H$	5.97%			
mSP4	$\chi_1^0 < \chi_1^\pm < \chi_2^0 < A$	3.05%		mSPI	$\chi_1^0 < \chi_1^\pm < \chi_2^0 < \chi_3^0$	4.12%			
mSP6	$\chi_1^0 < ilde{ au}_1 < \chi_2^0 < \chi_1^\pm$	3.03%		mSP4	$\chi_1^0 < \chi_1^\pm < \chi_2^0 < \tilde{g}$	3.48%			
mSP2	$\chi_1^0 < \chi_1^{\pm} < H < A$	2.77%		mSP7	$\chi_1^0 < \tilde{\tau}_1 < \tilde{e}_R < \chi_2^0$	3.22%			
mSPI	$\chi_1^0 < \chi_1^\pm < \chi_2^0 < \chi_3^0$	2.40%		mSP7	$\chi_1^0 < \tilde{\tau}_1 < \tilde{e}_R < \chi_1^\pm$	2.98%			
	$A < H < H^\pm < \chi_1^0$	2.19%		mSP6	$\chi_1^0 < \tilde{\tau}_1 < \chi_1^\pm < \chi_2^0$	2.23%			
mSPI0	$\chi_{1}^{0} < \chi_{1}^{\pm} < \chi_{2}^{0} < \tilde{e}_{R}$	1.81%		mSP4	$\chi_1^0 < \chi_2^0 < \chi_1^\pm < \tilde{g}$	2.08%			
mSP7	$\chi_1^0 < \tilde{\tau}_1 < \tilde{e}_R < \chi_2^0$	1.39%		mSP8	$\chi_1^0 < \tilde{\tau}_1 < H < A$	1.91%			
mSP2	$\chi_1^0 < \chi_2^0 < \chi_1^\pm < H$	1.20%		mSP2	$\chi_1^0 < \chi_1^\pm < \chi_2^0 < A$	1.86%			
				mSP2	$\chi_1^0 < \chi_2^0 < \chi_1^\pm < A$	1.76%			
0.12 < 0.1010									

J.1410 (WMAP upper)

mS

$0.0997 < \Omega_{\chi} h^2 < 0.1221$ (WMAP7)

 $m_h > 110 \,\mathrm{GeV}$ + updated mass bounds, indirect bounds

Summary and Outlook

- SUSY model building: important for testing TeV-scale SUSY hypothesis in LHC era
- Theory-motivated "mixed" scenarios: typically do not solve low energy problems of MSSM, but allow for means to "dial" between known scenarios and yield distinctive low energy spectra
- Deflected mirage mediation: string-motivated mixed gravitygauge-anomaly mediation model
- Current study: "landscape" of DMM models, comparison w/ mSUGRA and "SUSY without Prejudice" studies. Still need to characterize dark matter-allowed regions fully.
- Stay tuned!