Dark Matter news 2010

- 1) New data
- 2) New discoveries
- 3) New bounds
- 4) New theories

Alessandro Strumia, Planck 2010, June 1, 2010

DM is. Everywhere. Waiting for a sign

from the sky

from the underworld

from CERN

Prophets looked at the Universe and told $\sigma v = 3 \ 10^{-26} \text{ cm}^3/\text{sec.}$ Prophecy don't say which SM particles couple to DM: $q? \ \ell? W?$

Data is coming

Status of the field: messianic awaiting for the coming. New data this year:

- Indirect: FERMI γ sky
- Direct: CDMS/CoGenT/Xenon
- Collider: work in progress

New claims of Dark Matter: a few per year

Year Zero? Beware to fake Messiahs? "And they shall turn away their ears from the truth, and shall be turned unto fables" Timothy 4: 3,4.

Direct DM detection: theory

Direct DM detection: experiment

Bounds on the Spin-Independent $\sigma_{SI}(DM nucleon)$ parameter:

DM must be neutral under the γ , g and almost neutral under the ZThe vector effect vanishes if DM is real (e.g. a 'neutralino' Majorana fermion)

CDMS, Edelweiss, CoGeNT and Xenon

experiment	expected background	events seen	significance	sensitivity
CDMS	0.8 events	2	1.5σ	best
Edelweiss	0.15 events	1	1.5σ	good
CoGeNT	?	100+	?	at low M

CoGeNT is small and has low bck: competitive at low energy, so for light DM

DM mass in GeV

DAMA: new ideas / last hopes

Channeling. Mildly disfavored region at $M \sim 10 \text{ GeV}$ around CoGeNT. **Inelastic**. DM $N \rightarrow DM'N$ can explain DAMA for $M' - M \sim \mu v^2 \sim 100 \text{ keV}$. **Form factor:** the DM/nucleon coupling could be $\propto q^2 = (P_{\text{DM}} - P_N)^2$ or q^4

Non standard DM models can also fit the DAMA non-exponential spectrum.

Staus: disfavored. Xenon will tell. Heterotic DM: combine the previous ideas.

Indirect signals of Dark Matter

DN

DM

Sun

DM DM annihilations in our galaxy might give detectable γ , e^+ , \bar{p} , \bar{d} , ν .

Mark A. Garlick / space-art.co.uk

Indirect signals

Charged particles

PAMELA, FERMI/ATIC, HESS

Bad news for the future:

The e^{\pm} excesses can be unexpected DM

PAMELA e^+ needs either leptonic DM channels or any channel if $M \gtrsim \text{TeV}$.

PAMELA \bar{p} disfavor non-leptonic channels, unless $M \gtrsim 10 \text{ TeV}$.

ATIC or FERMI want leptonic channels and $M \sim 3 \,\text{TeV}$.

 σv a few orders above the value suggested by cosmology or $\tau \sim 10^{26}$ sec.

(caveats)

σ (PAMELA + FERMI) $\gg \sigma$ (cosmo)

up to co-annihilations, resonances, sub-clumps, ..., Sommerfeld enhancement: how to extrapolate the cosmological σv at $v \sim 0.2$ down to $v \sim 10^{-3}$?

Usually bad $\sigma v \propto v^0$ (s-wave) or worse $\sigma v \propto v^2$ (p-wave). Classic analogy: the sun attracts slower bodies, enhancing its cross section: $\sigma = \pi R_{\odot}^2 (1 + v_{escape}^2/v^2)$. Quantum Sommerfeld effect: $\sigma v \propto 1/v$ if DM is charged under a lighter particle.

Present in the SM if $M \gtrsim M_W / \alpha$, but DM would annihilate into $W^+ W^-$.

New DM theories

DM is charged under a dark gauge group, to get the Sommerfeld enhancement.

DM annihilates into the new vector. If light, $m \leq \text{GeV}$, it can only decay into the lighter leptons. Large $\sigma(\text{DM DM} \rightarrow \ell^+ \ell^+ \ell^- \ell^-)$ obtained.

 γ has a mixing θ with the new light vector, giving a $\sigma_{SI}(DM N)$ which is too large if elastic or possibly consistent with DAMA if inelastic thanks to a 100 keV splitting among Re DM and Im DM induced by the hidden higgs.

Sensitivity to θ , m can be best improved by e beam-dump experiments.

Dark Matter fit

DM with M = 3. TeV that annihilates into $\tau^+ \tau^-$ with $\sigma v = 1.8 \times 10^{-22}$ cm³/s

(Inverse Compton depends only on the e^{\pm} spectrum)

$\gamma~{\rm from}~{\rm DM}$

DM DM $\rightarrow \ell^+ \ell^-$ is unavoidably accompanied by photons:

- Brehmstralung from charged particles and $\pi^0 \rightarrow \gamma \gamma$ decays. Largest $E_{\gamma} \sim M_{\text{DM}}$, probed by HESS.
- Inverse Compton: $e^{\pm}\gamma \rightarrow e^{\pm}\gamma'$ scatterings on CMB and star-light: $\dot{E} \propto u_{\gamma}$. Intermediate $E_{\gamma'} \sim E_{\gamma} (E_e/m_e)^2 \sim 10 \text{ GeV}$ probed by FERMI
- Synchrotron: e^{\pm} in the galactic magnetic fit: $\dot{E} \propto u_B = B^2/2$. Small $E_{\gamma} \sim 10^{-6} \,\text{eV}$, probed by radio-observations: Davies, VLT, WMAP.

Indirect signals: γ

New FERMI data

FERMI full-sky γ maps

Main results:

- lots of stupid pulsars
- $\Phi_{\gamma}(E, b, \ell)$ can be fitted by conventional astrophysics: $\pi_0 + IC + brem$.
- Attempts to see DM contributions (Hooper, Raidal, Finkbeiner...)

Contract with NASA respected: all γ raw data freely available. But work in progress: public data still contain backgrounds to DM searches:

- \bullet misidentified hadrons above $\sim 100\,\text{GeV}.$
- point and transient astrophysical sources.

Robust bound from FERMI maps

Just impose DM < exp in all sky and energy regions:

PAMELA/FERMI as DM annihilations?

All at 3σ : region allowed by PAMELA e^+ and FERMI $e^+ + e^-$ vs bounds on: • FSR- γ from FERMI full sky, HESS Galactic Center, Ridge, Dwarf Spheroidals; • IC- γ for L = 4, 2, 1 kpc; • CMB; • ν ; • radio observations of the GC

 e^{\pm} excesses can be DM DM $\rightarrow 2\mu, 4\mu, 4e$ if ρ is isothermal Other profiles (NFW, Einasto...) and other channels ($\tau, W...$) cannot fit

The FERMI haze?

Some theorists claim a quasi-spherical 'FERMI haze' excess

FERMIons disagree [arXiv:1003.0002]

PAMELA/FERMI as **DM** decays?

Compatible with all profiles $\rho(r)$ because $\rho^2 \frac{\sigma v}{2M^2} \rightarrow \frac{\rho^1}{M\tau}$:

- GUT-suppressed dimension 6 operators give the needed $\tau \sim \frac{M_{GUT}^4}{M^5} \sim 10^{26} s$
- $M \sim 3 \text{ TeV}$ gives the cosmological Ω_{DM} if DM is a baryon-like asymmetry kept in thermal equilibrium by weak sphalerons down to $T_{\text{dec}} \sim 200 \text{ GeV}$.

FERMI diffuse

The spherical contribution was extracted from γ sky:

 $DM \rightarrow \tau^+ \tau^-$ with M = 6. TeV and $\tau = 5.4 \times 10^{25}$ sec

Reliable bounds on DM decays.

Bounds on DM annihilations depends on DM clustering history.

FERMI bound on γ lines

DM DM $\rightarrow \gamma \gamma$ with cosmological $\sigma v \approx 3 \ 10^{-26} \text{s}/\text{cm}^3$ excluded for M < 200 GeV!

E_{γ}	95%CL	$\langle \sigma v angle_{\gamma\gamma} ~ [\gamma Z] ~ (10^{-27} ~ { m cm^3 s^{-1}})$		$ au_{\gamma\gamma}$ $[\gamma Z]$ (10 ²⁸ s)			
(GeV)	$(10^{-9} \text{ cm}^{-2} \text{s}^{-1})$	NFW	Einasto	Isothermal	NFW	Einasto	Isotherr
30	3.5	0.3 [2.6]	0.2 [1.9]	0.5 [4.5]	17.6 [4.2]	17.8 [4.2]	17.5 [4.
40	4.5	0.7 [4.2]	0.5 [3.0]	1.2 [7.2]	10.1 [2.9]	10.3 [2.9]	10.0 [2.
50	2.4	0.6 [2.7]	0.4 [1.9]	1.0 [4.6]	15.5 [5.0]	15.7 [5.1]	15.4 [5.
60	3.1	1.1 [4.2]	0.8 [3.0]	1.8 [7.3]	9.8 [3.5]	10.0 [3.5]	9.7 [3.5
70	1.2	0.6 [2.0]	0.4 [1.4]	1.0 [3.4]	21.6 [8.2]	21.9 [8.3]	21.5 [8.
80	0.9	0.5 [1.7]	0.4 [1.2]	0.9 [2.9]	26.0 [10.4]	26.4 [10.5]	25.8 [10
90	2.6	2.0 [6.0]	1.5 [4.3]	3.5 [10.3]	7.7 [3.2]	7.8 [3.2]	7.6 [3.1
100	1.4	1.4 [3.8]	1.0 [2.8]	2.4 [6.6]	12.6 [5.4]	12.8 [5.4]	12.5 [5.
110	0.9	1.0 [2.7]	0.7 [1.9]	1.7 [4.6]	18.9 [8.2]	19.2 [8.3]	18.8 [8.
120	1.1	1.6 [4.0]	1.1 [2.9]	2.7 [6.9]	13.3 [5.9]	13.5 [6.0]	13.2 [5.
130	1.8	3.0 [7.3]	2.1 [5.3]	5.1 [12.6]	7.6 [3.4]	7.8 [3.5]	7.6 [3.4
140	1.9	3.5 [8.4]	2.5 [6.0]	6.0 [14.3]	7.0 [3.2]	7.1 [3.3]	7.0 [3.2
150	1.6	3.5 [8.2]	2.5 [5.9]	6.0 [14.1]	7.5 [3.5]	7.6 [3.5]	7.4 [3.4
160	1.1	2.7 [6.3]	2.0 [4.5]	4.7 [10.9]	10.2 [4.8]	10.4 [4.8]	10.1 [4.
170	0.6	1.7 [4.0]	1.3 [2.9]	3.0 [6.8]	17.0 [8.0]	17.2 [8.1]	16.9 [7.
180	0.9	2.7 [6.1]	1.9 [4.4]	4.6 [10.4]	11.6 [5.5]	11.8 [5.6]	11.6 [5.
190	0.9	3.2 [7.1]	2.3 [5.1]	5.5 [12.2]	10.4 [4.9]	10.5 [5.0]	10.3 [4.
200	0.9	3.3 [7.3]	2.4 [5.2]	5.7 [12.5]	10.6 [5.1]	10.8 [5.1]	10.5 [5.

Bounds from cosmology

DM annihilation rate $\propto \rho^2$ is enhanced in the early universe: its products can

1. affect BBN at $T \sim MeV$ fragmenting ⁴He, D, ³He... Their primordial abundances are not safely known.

- 2. affect CMB reionizing H after matter/radiation decoupling, $z \leq 1000$.
- 3. heat gas after structure formation $z \sim 10$. Depends on unknown non-linear small-scale DM clustering.

1, 2 and 3 give comparable constraints at the PAMELA-level, $\sigma v \sim 10^{-23} \text{ cm}^3/\text{sec.}$ 2 is stronger and robust and can be improved by PLANCK.

Conclusions

The PAMELA, FERMI-ATIC, HESS e^{\pm} excesses attracted most attention. They could be due to astrophysics or to unexpected DM as follows:

- \times 2e channel gave the ATIC peak, not the FERMI $e^+ + e^-$ excess.
- \times τ channels give too much $\gamma.$
- \times W, Z, q, b, h, t channels can only fit PAMELA e^+ and give too much γ .
- 3 TeV DM that annihilates in 2μ , 4μ , 4e. But only if the injection term is quasi constant: i) Isothermal profile; ii) DM decays.

DM predicts that the e^+ fraction must grow. DM IC- γ must be in FERMI sky.

Summer 2010: XENON results November 2010: AMS launch with Obama non-superconducting magnet Planck 2011: results from Planck