Unparticle Solution to Hierarchy

Nicholas Setzer with T. Gherghetta

University of Melbourne

June 1, 2010

The Plan

- Consider
 - 5D Model
 - Warped geometry
 - AdS in UV
 - Natural hierarchy between IR and UV scale
- The Results
 - Batell-Gherghetta Soft-wall
 - Hierarchy requires unparticles

Unparticles in 5D

- Georgi defined unparticle as an operator that is non-trivially scale invariant at low-energy
 - Physical interpretation as fractional number of massless particles
- Scale invariance is a subset of conformal invariance, so modify
- Use AdS/CFT to get a 5D picture
 - Unparticles are a continuum of mass modes
 - Unparticles correspond to fractional dimension operator in CFT

Randall Sundrum One (RS1)

- Need to stabilize R distance (Goldberger-Wise)
- Why not use GW scalar to replace IR brane?

BG Soft-Wall Geometry

$$extit{ds}^2 = e^{-2A(z)} \Big(\eta_{\mu
u} extit{d} x^\mu extit{d} x^
u + extit{d} z^2 \Big) \ A(z) = \ln kz + rac{2}{3} (\mu z)^
u$$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k'
- Consider:
 - \bullet μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2$$

• Boundary conditions require $\eta_0 = \langle \eta \rangle_0$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - \bullet μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\text{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0) (\eta - \eta_0) + m_{\text{UV}} (\eta - \eta_0)^2$$

• Boundary conditions require $\eta_0 = \langle \eta \rangle_0$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - ullet μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\text{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0) (\eta - \eta_0) + m_{\text{UV}} (\eta - \eta_0)^2$$

• Boundary conditions require $\eta_0 = \langle \eta \rangle_0$

6/13

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - ullet μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2$$

• Boundary conditions require $\eta_0 = \langle \eta \rangle_0$

- Need to achieve $\mu/k \sim 10^{-16}$
- What sets μ/k?
- Consider:
 - ullet μ sets scale where scalar back-reaction strong
 - Must fix field at one location
 - Boundary condition on UV brane fixes field
- Boundary potential:

$$\lambda_{\mathsf{UV}} = W(\eta_0) + \partial_{\eta} W(\eta_0)(\eta - \eta_0) + m_{\mathsf{UV}}(\eta - \eta_0)^2$$

• Boundary conditions require $\eta_0 = \langle \eta \rangle_0$

Scalar's Potential

Of course, ν has other consequences... Look at potential

$$V(\eta) = -12k^2 - k^2\nu\left(1 - \frac{\nu}{8}\right)\eta^2 + \cdots$$

Gives η 's mass as

$$m_{\eta}^2 = -2k^2\nu\left(1 - \frac{\nu}{8}\right)$$

AdS/CFT correspondence says operator dimension is

$$\Delta = 2 + \sqrt{4 + rac{m_{\eta}^2}{k^2}} = 2 + rac{1}{2}|4 - \nu|$$

Operator Dimension

The breakdown is

Hierarchy by Hand
$$\nu > 1$$
 $\Delta > \frac{5}{2}$

Improved Hierarchy
$$\nu \sim 1$$
 $\Delta \sim \frac{5}{2}$

Natural Hierarchy
$$0 < \nu < 1$$
 $2 < \Delta < \frac{5}{2}$

Operator Dimension

The breakdown is

Fluctuations Parameterized

$$extit{ds}^2 = e^{2(F-A(z))} \Big[ig((1-2F) \eta_{\mu
u} + h_{\mu
u} ig) extit{d} x^\mu extit{d} x^
u + 2A_\mu extit{d} x^\mu extit{d} z + extit{d} z^2 \Big] \ \eta = \langle \eta \rangle + ilde{\eta}$$

- Consider Just Scalar Modes
 - gravi-scalar, F
 - scalar tower of η
- Start with m = 0 modes

There are no massless modes

- Consider theory without UV brane
 - Theory invariant under $A(z) \rightarrow A(z) + C$
 - Look again at parameterization of fluctuations

$$ds^2 = e^{2(F - A(z))} \big[\big((1 - 2F) \eta_{\mu\nu} + h_{\mu\nu} \big) dx^{\mu} dx^{\nu} + 2A_{\mu} dx^{\mu} dz + dz^2 \big]$$

- F Goldstone boson
- But μ/k changes under shift: $\frac{\mu}{\nu} \to \frac{\mu}{\nu} e^{-C}$
- Fixing μ/k breaks symmetry
- With UV brane, μ/k determined, so no massless modes
- What about massive modes?

- There are no massless modes
- Consider theory without UV brane
 - Theory invariant under $A(z) \rightarrow A(z) + C$
 - Look again at parameterization of fluctuations:

$$ds^2 = e^{2(F-A(z))} \left[\left((1-2F)\eta_{\mu\nu} + h_{\mu\nu} \right) dx^{\mu} dx^{\nu} + 2A_{\mu} dx^{\mu} dz + dz^2 \right]$$

- F Goldstone boson
- But μ/k changes under shift: $\frac{\mu}{k} \to \frac{\mu}{k} e^{-C}$
- Fixing μ/k breaks symmetry
- With UV brane, μ/k determined, so no massless modes
- What about massive modes?

- There are no massless modes
- Consider theory without UV brane
 - Theory invariant under $A(z) \rightarrow A(z) + C$
 - Look again at parameterization of fluctuations:

$$ds^2 = e^{2(F-A(z))} ig[ig((1-2F) \eta_{\mu
u} + h_{\mu
u} ig) dx^{\mu} dx^{
u} + 2 A_{\mu} dx^{\mu} dz + dz^2 ig]$$

- F Goldstone boson
- But μ/k changes under shift: $\frac{\mu}{k} \rightarrow \frac{\mu}{k} e^{-C}$
- Fixing μ/k breaks symmetry
- With UV brane, μ/k determined, so no massless modes
- What about massive modes?

- There are no massless modes
- Consider theory without UV brane
 - Theory invariant under $A(z) \rightarrow A(z) + C$
 - Look again at parameterization of fluctuations:

$$ds^2 = e^{2(F-A(z))} ig[ig((1-2F) \eta_{\mu
u} + h_{\mu
u} ig) dx^{\mu} dx^{
u} + 2 A_{\mu} dx^{\mu} dz + dz^2 ig]$$

- F Goldstone boson
- But μ/k changes under shift: $\frac{\mu}{k} \rightarrow \frac{\mu}{k} e^{-C}$
- Fixing μ/k breaks symmetry
- With UV brane, μ/k determined, so no massless modes
- What about massive modes?

- There are no massless modes
- Consider theory without UV brane
 - Theory invariant under $A(z) \rightarrow A(z) + C$
 - Look again at parameterization of fluctuations:

$$\mathit{ds}^2 = e^{2(F-A(z))} \big[\big((1-2F) \eta_{\mu\nu} + h_{\mu\nu} \big) \mathit{dx}^\mu \mathit{dx}^\nu + 2A_\mu \mathit{dx}^\mu \mathit{dz} + \mathit{dz}^2 \big]$$

- F Goldstone boson
- But μ/k changes under shift: $\frac{\mu}{k} \to \frac{\mu}{k} e^{-C}$
- Fixing μ/k breaks symmetry
- With UV brane, μ/k determined, so no massless modes
- What about massive modes?

- There are no massless modes
- Consider theory without UV brane
 - Theory invariant under $A(z) \rightarrow A(z) + C$
 - Look again at parameterization of fluctuations:

$$ds^2 = e^{2(F-A(z))} ig[ig((1-2F) \eta_{\mu
u} + h_{\mu
u} ig) dx^{\mu} dx^{
u} + 2 A_{\mu} dx^{\mu} dz + dz^2 ig]$$

- F Goldstone boson
- But μ/k changes under shift: $\frac{\mu}{k} \rightarrow \frac{\mu}{k} e^{-C}$
- Fixing μ/k breaks symmetry
- With UV brane, μ/k determined, so no massless modes
- What about massive modes?

- There are no massless modes
- Consider theory without UV brane
 - Theory invariant under $A(z) \rightarrow A(z) + C$
 - Look again at parameterization of fluctuations:

$$\textit{ds}^{2} = \textit{e}^{2(F - \textit{A}(z))} \big[\big((1 - 2F) \eta_{\mu\nu} + \textit{h}_{\mu\nu} \big) \textit{dx}^{\mu} \textit{dx}^{\nu} + 2\textit{A}_{\mu} \textit{dx}^{\mu} \textit{dz} + \textit{dz}^{2} \big]$$

- F Goldstone boson
- But μ/k changes under shift: $\frac{\mu}{k} \rightarrow \frac{\mu}{k} e^{-C}$
- Fixing μ/k breaks symmetry
- With UV brane, μ/k determined, so no massless modes
- What about massive modes?

Scalar Modes - Massive

Suitable field redefinition permits writing as Schrödinger equation

$$\left(-\partial_z^2 + V_{SE}(z)\right)\psi = m^2\psi$$

Massive modes dynamical variable

$$v = -\sqrt{2}e^{-3A(z)/2}rac{\left\langle \eta
ight
angle '}{A'(z)}igg(-rac{1}{2}F + rac{A'(z)}{\left\langle \eta
ight
angle '} ilde{\eta}igg)$$

Schrödinger Potential Behavior

$$u > 1 \quad z \to \infty \Rightarrow V_{SE} \to \infty$$
 $u = 1 \quad z \to \infty \Rightarrow V_{SE} \to \mu^2$
 $u < 1 \quad z \to \infty \Rightarrow V_{SE} \to 0$

Scalar Modes - Massive

Suitable field redefinition permits writing as Schrödinger equation

$$\left(-\partial_z^2 + V_{\rm SE}(z)\right)\psi = m^2\psi$$

Massive modes dynamical variable

$$v = -\sqrt{2}e^{-3A(z)/2}rac{\left\langle \eta
ight
angle '}{A'(z)}igg(-rac{1}{2}F + rac{A'(z)}{\left\langle \eta
ight
angle '} ilde{\eta}igg)$$

Schrödinger Potential Behavior

$$u > 1 \quad z \to \infty \Rightarrow V_{\text{SE}} \to \infty$$
 $\nu = 1 \quad z \to \infty \Rightarrow V_{\text{SE}} \to \mu^2$
Continuum
 $m^2 > 0$
(Unparticles)

12 / 13

Summary

- Examined Planck weak Hierarchy for Batell-Gherghetta Soft-Wall
- Found natural hierarchy for $\nu < 1$
- $\bullet~\nu <$ 1 corresponds to fractional-dimension operators in dual theory
- $\nu <$ 1 implies a continuum of modes without a mass gap in the 5D theory
- Thus, natural hierarchy implies unparticles