T-parity: its problems and a solution based on: D. Pappadopulo and A.V. (to appear soon)

Alessandro Vichi

Planck 2010

Alessandro Vichi (EPFL)

Relevance of T-parity

The overlooked problems of T-parity

3 Solving the issues

• The (N + 1)-th (but the 1st really working) model of LHT

イロト イポト イヨト イヨト

• LH models successfully explain the lightness of Higgs boson however...

• Stringent constraints from EWPT:

$$\hat{S}\,,\,\hat{T}\sim rac{m_W^2}{m_
ho^2}\,,\qquad m_
ho\sim g_
ho t$$

• T-parity: selection rule forbidding tree level contribution to EWPT:

$$\hat{S}, \ \hat{T} \sim rac{lpha}{4\pi} rac{m_w^2}{m_
ho^2} \lesssim 10^{-3}$$

• All what we need is a \mathbb{Z}_2 symmerty: SM even, all the rest odd

Why T-parity?

- LH models successfully explain the lightness of Higgs boson however...
- Stringent constraints from EWPT:

$$\hat{S}\,,\,\hat{T}\sim rac{m_w^2}{m_
ho^2}\,,\qquad m_
ho\sim g_
ho f$$

• T-parity: selection rule forbidding tree level contribution to EWPT:

$$\hat{S}, \ \hat{T} \sim rac{lpha}{4\pi} rac{m_w^2}{m_
ho^2} \lesssim 10^{-3}$$

• All what we need is a \mathbb{Z}_2 symmerty: SM even, all the rest odd

- LH models successfully explain the lightness of Higgs boson however...
- Stringent constraints from EWPT:

$$\hat{m{S}}\,,\,\hat{m{T}}\sim rac{m_w^2}{m_
ho^2}\,,\qquad m_
ho\sim g_
ho f$$

• T-parity: selection rule forbidding tree level contribution to EWPT:

$$\hat{S}, \ \hat{T} \sim rac{lpha}{4\pi} rac{m_w^2}{m_
ho^2} \lesssim 10^{-3}$$

• All what we need is a \mathbb{Z}_2 symmerty: SM even, all the rest odd

イロト イポト イヨト イヨト

- LH models successfully explain the lightness of Higgs boson however...
- Stringent constraints from EWPT:

$$\hat{m{S}}\,,\,\hat{m{T}}\sim rac{m_w^2}{m_
ho^2}\,,\qquad m_
ho\sim g_
ho f$$

• T-parity: selection rule forbidding tree level contribution to EWPT:

$$\hat{S}, \ \hat{T} \sim rac{lpha}{4\pi} rac{m_w^2}{m_
ho^2} \lesssim 10^{-3}$$

• All what we need is a \mathbb{Z}_2 symmerty: SM even, all the rest odd

イロト イポト イヨト イヨト

$A_H \sim A_L - A_R$	
$A_{SM} \sim A_L + A_R$	
$U ightarrow U^{\dagger} \ \Rightarrow \ \Pi$	

T-parity: (L ↔ R) ∘ (SU(2)_V rotation of 2π)
no tree leve mixing with heavy vectors
Higgs the only even PNGB

T-parity: $(L \leftrightarrow R) \circ (SU(2)_V \text{ rotation of } 2\pi)$ • no tree leve mixing with heavy vectors

• Higgs the only even PNGB

• • • • • • • • • • • • •

T-parity: $(L \leftrightarrow R) \circ (SU(2)_V \text{ rotation of } 2\pi)$

- no tree leve mixing with heavy vectors
- Higgs the only even PNGB

T-parity: $(L \leftrightarrow R) \circ (SU(2)_V \text{ rotation of } 2\pi)$

no tree leve mixing with heavy vectors

• Higgs the only even PNGB

T-parity: $(L \leftrightarrow R) \circ (SU(2)_V \text{ rotation of } 2\pi)$

- no tree leve mixing with heavy vectors
- Higgs the only even PNGB

non $L \leftrightarrow R$ invariant

イロト イヨト イヨト イヨト

э

CCWZ construction

strong coupling with PNGB's from the kinetic term:

 huge 4-fermion interactions

vertex corrections

- Any representation invariant under L ↔ R contains 2m doublets
- 1 (even) is the SM doublet
- What about the other 2m 1?

• • • • • • • • • • • • •

- Any representation invariant under L ↔ R contains 2m doublets
- 1 (even) is the SM doublet
- What about the other 2m 1?

< ロ ト < 同 ト < 三 ト < 三 ト

None of the models proposed so far can: [exception: Csaki & al ('08)]
 reproduce the correct light SM spectrum

• prevent the Higgs mass from receiving quadratic corrections

All the models make use of representations of the unbroken G_V :

- If taken incomplete they badly break the global symmetry group:
 ⇒ corrections to the Higgs mass
- It taken complete they generically contain even singlets:

Tensions in T-parity models

- correct light spectrum VS Higgs mass @ 2-loops
- absence of large vertex corrections VS Higgs mass @ 2-loops

ヘロト 人間 とくほ とくほう

All the models make use of representations of the unbroken G_V :

- If taken incomplete they badly break the global symmetry group:
 ⇒ corrections to the Higgs mass
- It taken complete they generically contain even singlets:

Tensions in T-parity models

- correct light spectrum VS Higgs mass @ 2-loops
- absence of large vertex corrections VS Higgs mass @ 2-loops

ヘロア 人間 アメヨア イロア

All the models make use of representations of the unbroken \mathcal{G}_V :

- If taken incomplete they badly break the global symmetry group:
 ⇒ corrections to the Higgs mass
- It taken complete they generically contain even singlets:

\Rightarrow vertex corrections

Tensions in T-parity models

- correct light spectrum VS Higgs mass @ 2-loops
- absence of large vertex corrections VS Higgs mass @ 2-loops

ヘロト 人間 とくほ とくほう

All the models make use of representations of the unbroken G_V :

- If taken incomplete they badly break the global symmetry group:
 ⇒ corrections to the Higgs mass
- It taken complete they generically contain even singlets:

 \Rightarrow vertex corrections

Tensions in T-parity models

- correct light spectrum VS Higgs mass @ 2-loops
- absence of large vertex corrections VS Higgs mass @ 2-loops

イロン 不通 とう アイロン

Need to extend the coset

[Low (04), Csaki & al ('08)]

an additional broken $SU(2) \times U(1)$ is sufficient

	$\frac{(2) \times U(1)]^2}{U(2) \times U(1)}$

- correct light spectrum
- no vertex corrections
- Higgs mass protected by symmetries exact @ 1 loop
- new T-odd states in the 100-200 GeV range: a scalar triplet and singlet
- compatible with EWPT
- interesting phenomenology
- DM matter candidate (Darkon model)

Need to extend the coset

[Low (04), Csaki & al ('08)]

an additional broken $SU(2) \times U(1)$ is sufficient

	$(2) \times U(1)]^2$ $U(2) \times U(1)$

- correct light spectrum
- no vertex corrections
- Higgs mass protected by symmetries exact @ 1 loop
- new T-odd states in the 100-200 GeV range: a scalar triplet and singlet
- compatible with EWPT
- interesting phenomenology
- DM matter candidate (Darkon model)

Need to extend the coset

[Low (04), Csaki & al ('08)]

an additional broken $SU(2) \times U(1)$ is sufficient

Littlest	Higgs v	vith T-parity
$rac{SU(5)}{SO(5)}$ —	$\rightarrow \frac{SU(5)}{SO(5)} \times$	$\frac{[SU(2) \times U(1)]^2}{SU(2) \times U(1)}$

- correct light spectrum
- no vertex corrections
- Higgs mass protected by symmetries exact @ 1 loop
- new T-odd states in the 100-200 GeV range: a scalar triplet and singlet
- compatible with EWPT
- interesting phenomenology
- DM matter candidate (Darkon model)

Need to extend the coset

[Low (04), Csaki & al ('08)]

an additional broken $SU(2) \times U(1)$ is sufficient

Littlest	Higgs v	vith	T-parity
$rac{SU(5)}{SO(5)} \rightarrow$	$rac{SU(5)}{SO(5)} imes$	[SU SU	$(2) \times U(1)]^2$ $(2) \times U(1)$

- correct light spectrum
- no vertex corrections
- Higgs mass protected by symmetries exact @ 1 loop
- new T-odd states in the 100-200 GeV range: a scalar triplet and singlet
- compatible with EWPT
- interesting phenomenology
- DM matter candidate (Darkon model)

Need to extend the coset

[Low (04), Csaki & al ('08)]

an additional broken $SU(2) \times U(1)$ is sufficient

Littlest	Higgs w	/ith ⁻	F -parity
$rac{SU(5)}{SO(5)} ightarrow$	$rac{SU(5)}{SO(5)} imes$	[SU(2 SU($\frac{(2) \times U(1)]^2}{(2) \times U(1)}$

- correct light spectrum
- no vertex corrections
- Higgs mass protected by symmetries exact @ 1 loop
- new T-odd states in the 100-200 GeV range: a scalar triplet and singlet
- compatible with EWPT
- interesting phenomenology
- DM matter candidate (Darkon model)

Littlest	Higgs v	vith	T-parity
$rac{SU(5)}{SO(5)} ightarrow$	$rac{SU(5)}{SO(5)} imes$	[SU(SU($(2) \times U(1)]^2$ $(2) \times U(1)$

- correct light spectrum
- no vertex corrections
- Higgs mass protected by symmetries exact @ 1 loop
- new T-odd states in the 100-200 GeV range: a scalar triplet and singlet
- compatible with EWPT
- interesting phenomenology
- DM matter candidate (Darkon model)

Littlest	Higgs with T-parity
$rac{SU(5)}{SO(5)}$ –	$ ightarrow rac{SU(5)}{SO(5)} imes rac{[SU(2) imes U(1)]^2}{SU(2) imes U(1)}$

- correct light spectrum
- no vertex corrections
- Higgs mass protected by symmetries exact @ 1 loop
- new T-odd states in the 100-200 GeV range: a scalar triplet and singlet
- compatible with EWPT
- interesting phenomenology
- DM matter candidate (Darkon model)

Littlest	Higgs w	ith T-parity
$\frac{SU(5)}{SO(5)}$ –	$ ightarrow rac{SU(5)}{SO(5)} imes$	$\frac{[SU(2) \times U(1)]^2}{SU(2) \times U(1)}$

- correct light spectrum
- no vertex corrections
- Higgs mass protected by symmetries exact @ 1 loop
- new T-odd states in the 100-200 GeV range: a scalar triplet and singlet
- compatible with EWPT
- interesting phenomenology
- DM matter candidate (Darkon model)

Littlest	Higgs w	vith T-parity
$\frac{SU(5)}{SO(5)}$ –	$\rightarrow \frac{SU(5)}{SO(5)} \times$	$\frac{[SU(2) \times U(1)]^2}{SU(2) \times U(1)}$

- correct light spectrum
- no vertex corrections
- Higgs mass protected by symmetries exact @ 1 loop
- new T-odd states in the 100-200 GeV range: a scalar triplet and singlet
- compatible with EWPT
- interesting phenomenology
- DM matter candidate (Darkon model)

Littlest	Higgs v	vith	T-parity
$\frac{SU(5)}{SO(5)}$	$ \frac{SU(5)}{SO(5)} \times $	[SU(SU	$\frac{(2) \times U(1)]^2}{(2) \times U(1)}$

- correct light spectrum
- no vertex corrections
- Higgs mass protected by symmetries exact @ 1 loop
- new T-odd states in the 100-200 GeV range: a scalar triplet and singlet
- compatible with EWPT
- interesting phenomenology
- DM matter candidate (Darkon model)

- Model of LHT present in the literature are affected by overlooked pathologies
- We extracted the general recipe and a proposed a specific model

For further details watch out for the ArXiv in the next days